异质结
光催化
纳米棒
降级(电信)
材料科学
可见光谱
产量(工程)
电场
化学工程
纳米技术
光化学
光电子学
化学
催化作用
计算机科学
物理
有机化学
电信
复合材料
量子力学
工程类
作者
Dandan Wang,Chun Miao,Hongji Li,Bo Yu,Wenjie Wang,Yani Wang,Guangbo Che,Chunbo Liu,Bo Hu
标识
DOI:10.1016/j.materresbull.2023.112552
摘要
This study synthesized a well-designed 2D/1D g-C3N4/CeO2 visible-light-driven photocatalyst through a straightforward approach. The binary photocatalyst emerged remarkable photo-degradation performance with a removal rate of 99.07% towards RhB in 120min and the k value of 0.0361 min−1, which maintained over 95% in four cycles. Fascinatingly more, highly-active converting CO2 to CH4 instead of CO during CO2 photo-reduction. The yield rate of CH4 reached 14.63 µmol·g−1·h−1, which was 26.13 folds than the CO generation rate (0.56 µmol·g−1·h−1). Moreover, the CH4 yield rate of g-C3N4/CeO2 heterojunction was 22.4 and 20.9 times improvement in comparison with pristine CeO2 nanorods and CN nanosheets, respectively. On account of HPLC-MS, ESR, active species scavenger investigation, and accurate energy-band structure analysis, a possible RhB degradation mechanism over 2D/1D g-C3N4/CeO2 heterojunction was elucidated. Meanwhile, an S-scheme mechanism with a built-in electric field was illuminated, which helped understand the preeminent photocatalytic performance. This research offers systematic insights into the preparation, activity, and mechanism of g-C3N4-based photocatalysts for environmental purification projects.
科研通智能强力驱动
Strongly Powered by AbleSci AI