A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7

计算机科学 人工智能 合成孔径雷达 特征(语言学) 卷积(计算机科学) 计算机视觉 杂乱 目标检测 块(置换群论) 遥感 雷达 模式识别(心理学) 地质学 人工神经网络 数学 电信 哲学 语言学 几何学
作者
Hongying Tang,Shengli Gao,Shangyuan Li,Pengyu Wang,J. Liu,Simin Wang,Jiang Qian
标识
DOI:10.20944/preprints202310.1446.v1
摘要

The airborne and satellite-based synthetic aperture radar enables the acquisition of high-resolution SAR oceanographic images in which even the outlines of ships can be identified. The detection of ship targets from SAR images has a wide range of applications, such as the military, where the dynamic grasp of enemy targets can help improve the early warning capability of naval defence, and the civilian detection of illegal fishing vessels can help improve the level of maritime management. Due to the density of ships in SAR images, the extreme imbalance between foreground and background clutter, and the diversity of target sizes, achieving lightweight and highly accurate multi-scale ship target detection remains a great challenge. To this end, this paper proposes an attention mechanism for multiscale receptive fields convolution block (AMMRF). AMMRF not only makes full use of the location information of the feature map to accurately capture the regions in the feature map that are useful for detection results, but also effectively captures the relationship between the feature map channels, so as to better learn the relationship between the ship and the background. Based on this, a new YOLOv7-based ship target detection method, You Only Look Once SAR Ship Identification (YOLO-SARSI), is proposed, which acquires the abstract semantic information extracted from the high-level convolution while retaining the detailed semantic information extracted from the low-level convolution. Compared to the deep learning detection methods proposed by previous authors, our model is more lightweight, only 18.43M. We examined the effectiveness of our method on two SAR image public datasets: the High-Resolution SAR Images Dataset (HRSID) and the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-V1.0). The results show that the average accuracy AP50 of the detection method YOLO-SARSI proposed in this paper on the HRSID and LS-SSDD-V1.0 datasets is 4.9% and 5% higher than that of YOLOv7, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜嘎完成签到,获得积分10
1秒前
严十三发布了新的文献求助30
4秒前
认真生活完成签到,获得积分10
4秒前
111完成签到,获得积分10
4秒前
5秒前
怕黑的静蕾应助健忘症采纳,获得10
5秒前
5秒前
斯文败类应助跳跃的洪纲采纳,获得10
7秒前
追寻冰淇淋举报王小嘻求助涉嫌违规
9秒前
10秒前
开心每一天完成签到 ,获得积分10
11秒前
学习是头等大事完成签到,获得积分10
11秒前
LSD完成签到,获得积分10
12秒前
12秒前
怕黑的静蕾应助BLAZe采纳,获得10
12秒前
12秒前
佳佳应助微风采纳,获得10
14秒前
16秒前
马不停蹄完成签到,获得积分10
16秒前
不晚发布了新的文献求助10
16秒前
聆听完成签到,获得积分10
16秒前
学习要认真喽完成签到,获得积分10
16秒前
鸣笛发布了新的文献求助10
17秒前
18秒前
19秒前
丘比特应助oop采纳,获得30
20秒前
20秒前
大模型应助外婆的新世界采纳,获得10
20秒前
超越radiology完成签到,获得积分10
20秒前
曾经的风华完成签到,获得积分10
21秒前
yuqinghui98发布了新的文献求助10
22秒前
22秒前
22秒前
不晚完成签到,获得积分20
24秒前
完美世界应助111采纳,获得10
24秒前
小次之山发布了新的文献求助20
24秒前
26秒前
木子李完成签到,获得积分20
28秒前
彩色曼彤发布了新的文献求助10
31秒前
罗实完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421