A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7

计算机科学 人工智能 合成孔径雷达 特征(语言学) 卷积(计算机科学) 计算机视觉 杂乱 目标检测 块(置换群论) 遥感 雷达 模式识别(心理学) 地质学 人工神经网络 数学 电信 哲学 语言学 几何学
作者
Hongying Tang,Shengli Gao,Shangyuan Li,Pengyu Wang,J. Liu,Simin Wang,Jiang Qian
标识
DOI:10.20944/preprints202310.1446.v1
摘要

The airborne and satellite-based synthetic aperture radar enables the acquisition of high-resolution SAR oceanographic images in which even the outlines of ships can be identified. The detection of ship targets from SAR images has a wide range of applications, such as the military, where the dynamic grasp of enemy targets can help improve the early warning capability of naval defence, and the civilian detection of illegal fishing vessels can help improve the level of maritime management. Due to the density of ships in SAR images, the extreme imbalance between foreground and background clutter, and the diversity of target sizes, achieving lightweight and highly accurate multi-scale ship target detection remains a great challenge. To this end, this paper proposes an attention mechanism for multiscale receptive fields convolution block (AMMRF). AMMRF not only makes full use of the location information of the feature map to accurately capture the regions in the feature map that are useful for detection results, but also effectively captures the relationship between the feature map channels, so as to better learn the relationship between the ship and the background. Based on this, a new YOLOv7-based ship target detection method, You Only Look Once SAR Ship Identification (YOLO-SARSI), is proposed, which acquires the abstract semantic information extracted from the high-level convolution while retaining the detailed semantic information extracted from the low-level convolution. Compared to the deep learning detection methods proposed by previous authors, our model is more lightweight, only 18.43M. We examined the effectiveness of our method on two SAR image public datasets: the High-Resolution SAR Images Dataset (HRSID) and the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-V1.0). The results show that the average accuracy AP50 of the detection method YOLO-SARSI proposed in this paper on the HRSID and LS-SSDD-V1.0 datasets is 4.9% and 5% higher than that of YOLOv7, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laurina完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
最佳损友完成签到,获得积分0
1秒前
在水一方应助孔嘉宁采纳,获得10
2秒前
烟台深海美少女完成签到,获得积分10
2秒前
阁主发布了新的文献求助10
3秒前
guolina发布了新的文献求助10
3秒前
科研通AI6应助沉静盼山采纳,获得10
3秒前
4秒前
lieditongxu完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
6秒前
莫莫莫莫几完成签到,获得积分10
6秒前
王王完成签到,获得积分10
6秒前
6秒前
清爽的水蓝完成签到,获得积分10
6秒前
6秒前
乐乐应助徐志豪采纳,获得10
7秒前
momo完成签到 ,获得积分10
7秒前
lalalala发布了新的文献求助10
7秒前
成就的咖啡完成签到 ,获得积分10
7秒前
8秒前
杨小豆完成签到,获得积分20
8秒前
聪慧芸完成签到 ,获得积分10
9秒前
认真的飞扬完成签到,获得积分10
9秒前
qawsed发布了新的文献求助10
9秒前
9秒前
yxy发布了新的文献求助10
10秒前
dlcbdy完成签到,获得积分10
10秒前
慕青应助快看不到太阳采纳,获得10
11秒前
11秒前
Yik完成签到,获得积分10
11秒前
子清1987完成签到,获得积分10
11秒前
香蕉觅云应助洛伦佐Lorenzo采纳,获得10
11秒前
Gummybear发布了新的文献求助10
11秒前
anitamui发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327126
求助须知:如何正确求助?哪些是违规求助? 4467261
关于积分的说明 13900385
捐赠科研通 4359816
什么是DOI,文献DOI怎么找? 2394793
邀请新用户注册赠送积分活动 1388362
关于科研通互助平台的介绍 1359091