A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7

计算机科学 人工智能 合成孔径雷达 特征(语言学) 卷积(计算机科学) 计算机视觉 杂乱 目标检测 块(置换群论) 遥感 雷达 模式识别(心理学) 地质学 人工神经网络 数学 电信 哲学 语言学 几何学
作者
Hongying Tang,Shengli Gao,Shangyuan Li,Pengyu Wang,J. Liu,Simin Wang,Jiang Qian
标识
DOI:10.20944/preprints202310.1446.v1
摘要

The airborne and satellite-based synthetic aperture radar enables the acquisition of high-resolution SAR oceanographic images in which even the outlines of ships can be identified. The detection of ship targets from SAR images has a wide range of applications, such as the military, where the dynamic grasp of enemy targets can help improve the early warning capability of naval defence, and the civilian detection of illegal fishing vessels can help improve the level of maritime management. Due to the density of ships in SAR images, the extreme imbalance between foreground and background clutter, and the diversity of target sizes, achieving lightweight and highly accurate multi-scale ship target detection remains a great challenge. To this end, this paper proposes an attention mechanism for multiscale receptive fields convolution block (AMMRF). AMMRF not only makes full use of the location information of the feature map to accurately capture the regions in the feature map that are useful for detection results, but also effectively captures the relationship between the feature map channels, so as to better learn the relationship between the ship and the background. Based on this, a new YOLOv7-based ship target detection method, You Only Look Once SAR Ship Identification (YOLO-SARSI), is proposed, which acquires the abstract semantic information extracted from the high-level convolution while retaining the detailed semantic information extracted from the low-level convolution. Compared to the deep learning detection methods proposed by previous authors, our model is more lightweight, only 18.43M. We examined the effectiveness of our method on two SAR image public datasets: the High-Resolution SAR Images Dataset (HRSID) and the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-V1.0). The results show that the average accuracy AP50 of the detection method YOLO-SARSI proposed in this paper on the HRSID and LS-SSDD-V1.0 datasets is 4.9% and 5% higher than that of YOLOv7, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
island发布了新的文献求助10
2秒前
吴欣欣发布了新的文献求助10
2秒前
小烦同学完成签到,获得积分10
2秒前
3秒前
苏我入鹿完成签到,获得积分10
3秒前
天天快乐应助爱毁灭采纳,获得10
4秒前
脑洞疼应助海绵君采纳,获得10
4秒前
joy发布了新的文献求助30
4秒前
4秒前
程破茧发布了新的文献求助10
4秒前
5秒前
5秒前
飘零的歌手完成签到,获得积分10
5秒前
Orange应助Frank采纳,获得10
5秒前
科研通AI5应助11采纳,获得10
5秒前
wanci应助FUNG采纳,获得10
5秒前
sss2021完成签到,获得积分10
6秒前
Eisernem完成签到,获得积分10
6秒前
7秒前
oi完成签到,获得积分10
7秒前
7秒前
7秒前
无私白昼发布了新的文献求助10
8秒前
zkkz完成签到,获得积分10
9秒前
科研通AI6应助无限的绮晴采纳,获得10
9秒前
科研通AI5应助kris采纳,获得10
10秒前
10秒前
权涛发布了新的文献求助10
10秒前
orixero应助江晚正愁余采纳,获得10
10秒前
新兴领袖发布了新的文献求助10
10秒前
liuhongcan完成签到,获得积分10
11秒前
11秒前
lin完成签到,获得积分10
11秒前
11秒前
12秒前
可心X完成签到,获得积分20
12秒前
12秒前
五五完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541