亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7

计算机科学 人工智能 合成孔径雷达 特征(语言学) 卷积(计算机科学) 计算机视觉 杂乱 目标检测 块(置换群论) 遥感 雷达 模式识别(心理学) 地质学 人工神经网络 数学 电信 哲学 语言学 几何学
作者
Hongying Tang,Shengli Gao,Shangyuan Li,Pengyu Wang,J. Liu,Simin Wang,Jiang Qian
标识
DOI:10.20944/preprints202310.1446.v1
摘要

The airborne and satellite-based synthetic aperture radar enables the acquisition of high-resolution SAR oceanographic images in which even the outlines of ships can be identified. The detection of ship targets from SAR images has a wide range of applications, such as the military, where the dynamic grasp of enemy targets can help improve the early warning capability of naval defence, and the civilian detection of illegal fishing vessels can help improve the level of maritime management. Due to the density of ships in SAR images, the extreme imbalance between foreground and background clutter, and the diversity of target sizes, achieving lightweight and highly accurate multi-scale ship target detection remains a great challenge. To this end, this paper proposes an attention mechanism for multiscale receptive fields convolution block (AMMRF). AMMRF not only makes full use of the location information of the feature map to accurately capture the regions in the feature map that are useful for detection results, but also effectively captures the relationship between the feature map channels, so as to better learn the relationship between the ship and the background. Based on this, a new YOLOv7-based ship target detection method, You Only Look Once SAR Ship Identification (YOLO-SARSI), is proposed, which acquires the abstract semantic information extracted from the high-level convolution while retaining the detailed semantic information extracted from the low-level convolution. Compared to the deep learning detection methods proposed by previous authors, our model is more lightweight, only 18.43M. We examined the effectiveness of our method on two SAR image public datasets: the High-Resolution SAR Images Dataset (HRSID) and the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-V1.0). The results show that the average accuracy AP50 of the detection method YOLO-SARSI proposed in this paper on the HRSID and LS-SSDD-V1.0 datasets is 4.9% and 5% higher than that of YOLOv7, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石鑫发布了新的文献求助10
5秒前
5秒前
liwang9301完成签到,获得积分10
10秒前
20秒前
27秒前
32秒前
这个手刹不太灵完成签到 ,获得积分10
33秒前
39秒前
天才小熊猫完成签到,获得积分10
49秒前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
开放的麦片完成签到,获得积分10
1分钟前
lizhoukan1完成签到,获得积分10
1分钟前
毛毛猫完成签到 ,获得积分10
1分钟前
cdu应助veggieg采纳,获得30
1分钟前
石鑫完成签到 ,获得积分10
1分钟前
舒服的幼荷完成签到,获得积分10
2分钟前
在路上完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
lzy发布了新的文献求助10
2分钟前
2分钟前
xu发布了新的文献求助10
2分钟前
will214完成签到,获得积分10
2分钟前
will214发布了新的文献求助10
2分钟前
2分钟前
JUST发布了新的文献求助10
3分钟前
veggieg发布了新的文献求助10
3分钟前
kirirto发布了新的文献求助10
3分钟前
JamesPei应助清雨采纳,获得10
3分钟前
JUST完成签到,获得积分10
3分钟前
乐乐应助kirirto采纳,获得10
3分钟前
3分钟前
清雨发布了新的文献求助10
3分钟前
NexusExplorer应助hbzyydx46采纳,获得10
3分钟前
Uniibooy完成签到 ,获得积分10
3分钟前
Shrine完成签到,获得积分10
4分钟前
阿巡发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845964
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748