亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7

计算机科学 人工智能 合成孔径雷达 特征(语言学) 卷积(计算机科学) 计算机视觉 杂乱 目标检测 块(置换群论) 遥感 雷达 模式识别(心理学) 地质学 人工神经网络 数学 电信 哲学 语言学 几何学
作者
Hongying Tang,Shengli Gao,Shangyuan Li,Pengyu Wang,J. Liu,Simin Wang,Jiang Qian
标识
DOI:10.20944/preprints202310.1446.v1
摘要

The airborne and satellite-based synthetic aperture radar enables the acquisition of high-resolution SAR oceanographic images in which even the outlines of ships can be identified. The detection of ship targets from SAR images has a wide range of applications, such as the military, where the dynamic grasp of enemy targets can help improve the early warning capability of naval defence, and the civilian detection of illegal fishing vessels can help improve the level of maritime management. Due to the density of ships in SAR images, the extreme imbalance between foreground and background clutter, and the diversity of target sizes, achieving lightweight and highly accurate multi-scale ship target detection remains a great challenge. To this end, this paper proposes an attention mechanism for multiscale receptive fields convolution block (AMMRF). AMMRF not only makes full use of the location information of the feature map to accurately capture the regions in the feature map that are useful for detection results, but also effectively captures the relationship between the feature map channels, so as to better learn the relationship between the ship and the background. Based on this, a new YOLOv7-based ship target detection method, You Only Look Once SAR Ship Identification (YOLO-SARSI), is proposed, which acquires the abstract semantic information extracted from the high-level convolution while retaining the detailed semantic information extracted from the low-level convolution. Compared to the deep learning detection methods proposed by previous authors, our model is more lightweight, only 18.43M. We examined the effectiveness of our method on two SAR image public datasets: the High-Resolution SAR Images Dataset (HRSID) and the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-V1.0). The results show that the average accuracy AP50 of the detection method YOLO-SARSI proposed in this paper on the HRSID and LS-SSDD-V1.0 datasets is 4.9% and 5% higher than that of YOLOv7, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
36秒前
nannan完成签到 ,获得积分10
38秒前
小马甲应助sunshine采纳,获得30
1分钟前
1分钟前
碧蓝的万宝路完成签到 ,获得积分10
1分钟前
千里草发布了新的文献求助10
1分钟前
sunshine发布了新的文献求助30
1分钟前
1分钟前
无花果应助Sience采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Sience发布了新的文献求助10
1分钟前
1分钟前
2分钟前
lalala完成签到,获得积分10
2分钟前
祖宛凝完成签到,获得积分10
2分钟前
2分钟前
张秋贤完成签到,获得积分10
2分钟前
陈如馨发布了新的文献求助10
3分钟前
3分钟前
JamesPei应助hms采纳,获得10
3分钟前
swg发布了新的文献求助10
3分钟前
曹官子完成签到 ,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
hms完成签到 ,获得积分10
5分钟前
hms发布了新的文献求助10
5分钟前
孙孙应助科研通管家采纳,获得10
5分钟前
孙孙应助科研通管家采纳,获得10
5分钟前
严珍珍完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
简因完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
大个应助Nill采纳,获得10
8分钟前
leo完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611884
求助须知:如何正确求助?哪些是违规求助? 4017289
关于积分的说明 12436182
捐赠科研通 3699253
什么是DOI,文献DOI怎么找? 2040064
邀请新用户注册赠送积分活动 1072855
科研通“疑难数据库(出版商)”最低求助积分说明 956546