热导率
裂变产物
铀
核燃料
裂变
硅化物
核裂变产物
格子(音乐)
玻尔兹曼方程
热的
材料科学
热力学
硅
原子物理学
化学
放射化学
分析化学(期刊)
核物理学
核化学
物理
中子
冶金
色谱法
声学
作者
Hangbo Qi,Buda Li,Menglu Li,S. M. Feng,Jutao Hu,Hengfeng Gong,Qisen Ren,Yehong Liao,Haiyan Xiao,Xiaotao Zu
标识
DOI:10.1088/1361-648x/acf63a
摘要
In the past decades, uranium silicide (U3Si2) as a promising accident tolerant fuel (ATF) has drawn considerable attention in the field of nuclear physics. In comparison with traditional nuclear fuel (UO2), the U3Si2has higher thermal conductivity and uranium density, thereby resulting in lower centerline temperatures and better fuel economy. However, during the nuclear fission reaction, some unexpected fission products, such as Xe and Cs, are released and form the defective states. In this study, we explore the influence of Xe and Cs on the thermal conductivity of the U3Si2lattice from 200 to 1500 K using density functional theory calculations combined with Boltzmann transport equation. Our results reveal that the lattice and electronic thermal conductivities of defective U3Si2are reduced at a constant temperature, as compared with that of ideal system, thus resulting in a decrease of the total thermal conductivity. In the case of Cs occupation at U1 site, the total thermal conductivity (4.42 W mK-1) is decreased by ∼56% at 300 K, as compared with the value of 9.99 W mK-1for ideal system. With U1 and Si sites being occupied by Xe, the total thermal conductivities (4.45 and 6.52 W mK-1) are decreased by ∼55% and 35% at 300 K, respectively. The presented results suggest that the U3Si2has potential as a promising ATF at high temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI