Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning

医学 乳腺癌 可解释性 接收机工作特性 深度学习 卷积神经网络 试验装置 人工智能 腋窝淋巴结 转移 阶段(地层学) 放射科 癌症 内科学 肿瘤科 计算机科学 古生物学 生物
作者
Weibin Li,Zhicheng Du,Yue-Jie Liu,Junxue Gao,Jia-Gang Wang,Qian Dai,Wen‐He Huang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:1
标识
DOI:10.3389/fonc.2023.1219838
摘要

To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models.Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review.A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junex发布了新的文献求助10
刚刚
王利完成签到,获得积分10
刚刚
董家小生完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
激动的士萧完成签到,获得积分10
5秒前
Gatita完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
5秒前
想自由发布了新的文献求助10
5秒前
汪天问完成签到,获得积分10
6秒前
Alberto完成签到,获得积分10
6秒前
烟花应助秋名山流川枫采纳,获得10
6秒前
科研通AI2S应助STR采纳,获得10
6秒前
ll完成签到,获得积分20
6秒前
迷路又菱完成签到,获得积分10
6秒前
cx211发布了新的文献求助10
7秒前
WeMeH完成签到 ,获得积分20
7秒前
9秒前
科研通AI2S应助大胆的不斜采纳,获得10
10秒前
汪天问发布了新的文献求助10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得30
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
Accepted应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
李佳洲完成签到,获得积分10
14秒前
14秒前
海鸥完成签到,获得积分10
15秒前
16秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237