Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning

医学 乳腺癌 可解释性 接收机工作特性 深度学习 卷积神经网络 试验装置 人工智能 腋窝淋巴结 转移 阶段(地层学) 放射科 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Weibin Li,Zhicheng Du,Yue-Jie Liu,Junxue Gao,Jia-Gang Wang,Qian Dai,Wen‐He Huang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1219838
摘要

To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models.Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review.A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlarrow发布了新的文献求助30
4秒前
ljr65完成签到 ,获得积分10
6秒前
英姑应助行路难采纳,获得10
7秒前
科研通AI2S应助lu采纳,获得10
7秒前
鄢亮完成签到,获得积分10
8秒前
djx123发布了新的文献求助10
9秒前
9秒前
12秒前
浮游应助秀丽焦采纳,获得30
15秒前
科研通AI6应助彩虹屁采纳,获得10
17秒前
科研通AI6应助甜甜的静柏采纳,获得10
17秒前
水心发布了新的文献求助10
17秒前
18秒前
djx123完成签到,获得积分10
19秒前
ghq7724完成签到,获得积分20
20秒前
23秒前
23秒前
思源应助fanzi采纳,获得10
24秒前
zhangyimg完成签到,获得积分10
24秒前
天天快乐应助糊涂的墨镜采纳,获得10
26秒前
28秒前
Tourist应助kaiee采纳,获得10
28秒前
曲幻梅完成签到,获得积分10
28秒前
小麦发布了新的文献求助10
28秒前
科研通AI6应助wzg666采纳,获得30
31秒前
31秒前
31秒前
33秒前
34秒前
所所应助水心采纳,获得10
35秒前
36秒前
冷静幻枫发布了新的文献求助10
37秒前
jason0023发布了新的文献求助10
38秒前
waubycid发布了新的文献求助10
38秒前
39秒前
星辰大海应助开心的雁芙采纳,获得10
39秒前
111完成签到,获得积分10
40秒前
Anada发布了新的文献求助10
41秒前
41秒前
大猫完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592