已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning

医学 乳腺癌 可解释性 接收机工作特性 深度学习 卷积神经网络 试验装置 人工智能 腋窝淋巴结 转移 阶段(地层学) 放射科 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Weibin Li,Zhicheng Du,Yue-Jie Liu,Junxue Gao,Jia-Gang Wang,Qian Dai,Wen‐He Huang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1219838
摘要

To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models.Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review.A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
QQQQQQQQQ关注了科研通微信公众号
4秒前
5秒前
张三发布了新的文献求助10
7秒前
8秒前
8秒前
zhangHR完成签到 ,获得积分20
9秒前
9秒前
Ico发布了新的文献求助10
9秒前
cyw关注了科研通微信公众号
10秒前
10秒前
12秒前
糊涂完成签到 ,获得积分10
13秒前
14秒前
IV完成签到,获得积分10
14秒前
duang发布了新的文献求助10
15秒前
15秒前
受伤白猫发布了新的文献求助10
15秒前
隐形曼青应助清风采纳,获得10
16秒前
浮游应助AIR采纳,获得10
16秒前
16秒前
超人强发布了新的文献求助10
16秒前
糊涂关注了科研通微信公众号
17秒前
17秒前
李李发布了新的文献求助10
17秒前
华仔应助朝与暮采纳,获得10
19秒前
三三椋椋发布了新的文献求助10
19秒前
酷酷幻梦发布了新的文献求助10
20秒前
totoro发布了新的文献求助10
20秒前
20秒前
白板完成签到,获得积分10
21秒前
酷bile完成签到,获得积分10
21秒前
Lina完成签到,获得积分10
22秒前
上官若男应助chloe采纳,获得10
22秒前
cyw发布了新的文献求助10
22秒前
木火完成签到,获得积分10
22秒前
23秒前
羊羊发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919