Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning

医学 乳腺癌 可解释性 接收机工作特性 深度学习 卷积神经网络 试验装置 人工智能 腋窝淋巴结 转移 阶段(地层学) 放射科 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Weibin Li,Zhicheng Du,Yue-Jie Liu,Junxue Gao,Jia-Gang Wang,Qian Dai,Wen‐He Huang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1219838
摘要

To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models.Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review.A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的夕阳完成签到,获得积分10
刚刚
614521完成签到,获得积分10
1秒前
屈昭阳发布了新的文献求助10
1秒前
充电宝应助111采纳,获得10
2秒前
fly完成签到,获得积分10
2秒前
3秒前
寒冷的迎梦完成签到,获得积分10
4秒前
chen完成签到,获得积分10
5秒前
7秒前
科研通AI5应助熊风采纳,获得10
7秒前
LYW完成签到,获得积分10
8秒前
科研狗完成签到,获得积分10
8秒前
dog发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
Cheng完成签到 ,获得积分0
10秒前
LIU发布了新的文献求助10
11秒前
Hcr完成签到,获得积分10
11秒前
11秒前
充电宝应助纯真雁菱采纳,获得10
12秒前
英姑应助dog采纳,获得10
12秒前
13秒前
13秒前
棒棒羊完成签到,获得积分10
13秒前
mmm4完成签到 ,获得积分10
14秒前
搜索文献发布了新的文献求助10
15秒前
15秒前
15秒前
汉堡包应助肥肠的枣糕啊采纳,获得10
15秒前
pangboo发布了新的文献求助20
16秒前
17秒前
17秒前
Hcr发布了新的文献求助30
18秒前
李爱国应助年轻的夕阳采纳,获得10
19秒前
20秒前
我是屈原在世完成签到,获得积分10
20秒前
21秒前
21秒前
南橘完成签到,获得积分10
21秒前
笨笨发布了新的文献求助10
21秒前
脑洞疼应助超级煎饼采纳,获得10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983