亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning

医学 乳腺癌 可解释性 接收机工作特性 深度学习 卷积神经网络 试验装置 人工智能 腋窝淋巴结 转移 阶段(地层学) 放射科 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Weibin Li,Zhicheng Du,Yue-Jie Liu,Junxue Gao,Jia-Gang Wang,Qian Dai,Wen‐He Huang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1219838
摘要

To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models.Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review.A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HTniconico完成签到 ,获得积分10
1秒前
开朗白山完成签到,获得积分10
4秒前
8秒前
jingluo发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
彭于晏应助hhh采纳,获得10
19秒前
我主沉浮完成签到,获得积分10
19秒前
20秒前
嘻嘻哈哈应助abc采纳,获得10
21秒前
23秒前
八两发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
28秒前
29秒前
29秒前
30秒前
30秒前
30秒前
117完成签到,获得积分10
32秒前
hhh发布了新的文献求助10
32秒前
hhh发布了新的文献求助10
33秒前
hhh发布了新的文献求助10
33秒前
hhh发布了新的文献求助10
33秒前
可爱玫瑰发布了新的文献求助10
35秒前
浮游应助inin采纳,获得10
36秒前
55秒前
西柚柠檬完成签到 ,获得积分10
57秒前
梓镱儿完成签到,获得积分10
58秒前
Aulorra完成签到,获得积分20
1分钟前
1分钟前
久久丫完成签到 ,获得积分10
1分钟前
1分钟前
科目三应助zy采纳,获得10
1分钟前
1分钟前
可爱玫瑰完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李亚宁发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164