Exploring the potential of hydrophobic deep eutectic solvents for bioethanol separation using DFT and COSMO-RS model

化学 氢键 生物燃料 共晶体系 价(化学) 制氢 分子中的原子 计算化学 分子 有机化学 合金 生态学 生物
作者
Palwasha Khan,Muhammad Yasin,Hamad AlMohamadi,Xiangping Zhang,Asim Laeeq Khan,Rashid Nawaz,Mazhar Amjad Gilani
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:393: 123665-123665 被引量:14
标识
DOI:10.1016/j.molliq.2023.123665
摘要

Bioethanol has sparked significant interest as a promising energy source due to its green nature and sustainability. However, the separation of bioethanol presents considerable challenges. Deep eutectic solvents (DESs), as alternatives to conventional solvents, have shown efficient separation capabilities in various separation processes. However, selection of an ideal DES for a specific task always remains a challenge. In the present study, fifteen different hydrophobic DESs have been screened by employing COSMO-RS model. Three DESs (1,2-Decanediol: Thymol, Atropine: Thymol, and Lauric acid: Lidocaine) showing the best separation performance for ethanol from water were selected. DFT simulations have unveiled interaction mechanisms, emphasizing hydrogen bonding. Molecular electrostatic potential (MEP) analysis has identified the possible interaction sites for binding. Thermodynamic stabilities of the DES-ethanol complexes are elucidated through energy decomposition analysis (EDA) and second-order perturbation energies. Quantum theory of atoms in molecules (QTAIM) and interaction region indicator (IRI) analyses corroborate the existence of electrostatic interactions, predominantly in the form of hydrogen bonding, between ethanol and DESs. The significance of robust hydrogen bonding in driving ethanol separation is underscored through core-valence bifurcation (CVB) index analysis. The findings of this study yield a robust and practical methodology for choosing the most suitable DES, thereby enhancing the efficacy of ethanol separation from fermentation broths. This outcome offers a valuable and efficient approach that holds considerable promise for advancing the field of bioethanol production and refining processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的水彤完成签到 ,获得积分10
刚刚
刘金金完成签到,获得积分10
1秒前
1秒前
命运的X号发布了新的文献求助10
1秒前
2秒前
HJJHJH发布了新的文献求助10
2秒前
2秒前
爱听歌的电源完成签到,获得积分10
2秒前
善学以致用应助新的心跳采纳,获得10
2秒前
3秒前
陈梦雨发布了新的文献求助10
4秒前
复杂瑛完成签到,获得积分10
4秒前
4秒前
5秒前
眼睛大世开完成签到 ,获得积分10
5秒前
赤邪发布了新的文献求助10
6秒前
安凉完成签到,获得积分10
6秒前
yangyong完成签到,获得积分10
6秒前
zkkz完成签到,获得积分10
6秒前
打打应助橘子采纳,获得40
6秒前
Jasper应助云澈采纳,获得10
6秒前
隐形曼青应助7777777采纳,获得10
6秒前
科研通AI5应助SCI采纳,获得10
7秒前
芋头不秃头完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
kushdw完成签到,获得积分10
9秒前
傲娇小废柴完成签到,获得积分20
10秒前
TranYan发布了新的文献求助10
10秒前
Sally发布了新的文献求助10
10秒前
sun应助怡然的飞珍采纳,获得20
11秒前
11秒前
12秒前
12秒前
孔雨珍完成签到,获得积分10
13秒前
娇气的春天完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794