Value function assessment to different RL algorithms for heparin treatment policy of patients with sepsis in ICU

相似性(几何) 医学 计算机科学 价值(数学) 功能(生物学) 败血症 重症监护医学 人工智能 机器学习 外科 图像(数学) 进化生物学 生物
作者
Jiang Liu,Yihao Xie,Xin Shu,Yuwen Chen,Yizhu Sun,Kunhua Zhong,Hao Liang,Yujie Li,Chunyong Yang,Han Yan,Yuwei Zou,Ziting Zhuyi,Jiahao Huang,Jun-Hong Li,Xiao Hu,Yi Bin
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102726-102726 被引量:2
标识
DOI:10.1016/j.artmed.2023.102726
摘要

Heparin is a critical aspect of managing sepsis after abdominal surgery, which can improve microcirculation, protect organ function, and reduce mortality. However, there is no clinical evidence to support decision-making for heparin dosage. This paper proposes a model called SOFA-MDP, which utilizes SOFA scores as states of MDP, to investigate clinic policies. Different algorithms provide different value functions, making it challenging to determine which value function is more reliable. Due to ethical restrictions, we cannot test all policies on patients. To address this issue, we proposed two value function assessment methods: action similarity rate and relative gain. We experimented with heparin treatment policies for sepsis patients after abdominal surgery using MIMIC-IV. In the experiments, TD(0) shows the most reliable performance. Using the action similarity rate and relative gain to assess AI policy from TD(0), the agreement rates between AI policy and "good" physician's actual treatment are 64.6% and 73.2%, while the agreement rates between AI policy and "bad" physician's actual treatment are 44.1% and 35.8%, the gaps are 20.5% and 37.4%, respectively. External validation using action similarity rate and relative gain based on eICU resulted in agreement rates of 61.5% and 69.1% with the "good" physician's treatment, and 45.2% and 38.3% with the "bad" physician's treatment, with gaps of 16.3% and 30.8%, respectively. In conclusion, the model provides instructive support for clinical decisions, and the evaluation methods accurately distinguish reliable and unreasonable outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助junzilan采纳,获得10
刚刚
张老涵发布了新的文献求助10
刚刚
灌饼发布了新的文献求助30
刚刚
罗实发布了新的文献求助10
刚刚
张张发布了新的文献求助10
1秒前
木香发布了新的文献求助10
1秒前
朴实以松发布了新的文献求助10
1秒前
在水一方应助神帅酷哥采纳,获得10
1秒前
2秒前
2秒前
pipge发布了新的文献求助30
2秒前
2秒前
万能图书馆应助卡卡采纳,获得10
2秒前
牛虫虫发布了新的文献求助30
3秒前
3秒前
柔弱飞雪完成签到,获得积分10
3秒前
一种信仰完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
YE完成签到,获得积分10
5秒前
2鱼完成签到,获得积分10
5秒前
FooLeup立仔完成签到,获得积分10
5秒前
6秒前
顾矜应助JUll采纳,获得10
6秒前
Amai发布了新的文献求助20
6秒前
小马甲应助Lucas采纳,获得10
6秒前
7秒前
zZ发布了新的文献求助10
7秒前
qi完成签到,获得积分10
8秒前
标致缘郡发布了新的文献求助10
8秒前
miawei完成签到,获得积分10
9秒前
9秒前
wangfu发布了新的文献求助10
9秒前
明理依云完成签到,获得积分10
9秒前
9秒前
10秒前
二世小卒完成签到 ,获得积分10
10秒前
和谐乌龟完成签到,获得积分10
11秒前
阳尧完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794