Value function assessment to different RL algorithms for heparin treatment policy of patients with sepsis in ICU

相似性(几何) 医学 计算机科学 价值(数学) 功能(生物学) 败血症 重症监护医学 人工智能 机器学习 外科 图像(数学) 进化生物学 生物
作者
Jiang Liu,Yihao Xie,Xin Shu,Yuwen Chen,Yizhu Sun,Kunhua Zhong,Hao Liang,Yujie Li,Chunyong Yang,Han Yan,Yuwei Zou,Ziting Zhuyi,Jiahao Huang,Jun-Hong Li,Xiao Hu,Yi Bin
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102726-102726 被引量:4
标识
DOI:10.1016/j.artmed.2023.102726
摘要

Heparin is a critical aspect of managing sepsis after abdominal surgery, which can improve microcirculation, protect organ function, and reduce mortality. However, there is no clinical evidence to support decision-making for heparin dosage. This paper proposes a model called SOFA-MDP, which utilizes SOFA scores as states of MDP, to investigate clinic policies. Different algorithms provide different value functions, making it challenging to determine which value function is more reliable. Due to ethical restrictions, we cannot test all policies on patients. To address this issue, we proposed two value function assessment methods: action similarity rate and relative gain. We experimented with heparin treatment policies for sepsis patients after abdominal surgery using MIMIC-IV. In the experiments, TD(0) shows the most reliable performance. Using the action similarity rate and relative gain to assess AI policy from TD(0), the agreement rates between AI policy and "good" physician's actual treatment are 64.6% and 73.2%, while the agreement rates between AI policy and "bad" physician's actual treatment are 44.1% and 35.8%, the gaps are 20.5% and 37.4%, respectively. External validation using action similarity rate and relative gain based on eICU resulted in agreement rates of 61.5% and 69.1% with the "good" physician's treatment, and 45.2% and 38.3% with the "bad" physician's treatment, with gaps of 16.3% and 30.8%, respectively. In conclusion, the model provides instructive support for clinical decisions, and the evaluation methods accurately distinguish reliable and unreasonable outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzheyu完成签到,获得积分10
刚刚
嘻嘻哈哈发布了新的文献求助70
2秒前
xiaotailan完成签到,获得积分10
2秒前
FUNG完成签到 ,获得积分10
2秒前
Doner完成签到,获得积分10
3秒前
我是小张完成签到 ,获得积分10
4秒前
mly完成签到 ,获得积分10
6秒前
张宇鑫完成签到,获得积分10
10秒前
Ding-Ding完成签到,获得积分10
11秒前
倩倩完成签到 ,获得积分10
14秒前
HuanChen完成签到 ,获得积分10
16秒前
huge完成签到,获得积分20
16秒前
川藏客完成签到,获得积分10
17秒前
迅速访文完成签到,获得积分10
17秒前
青菜完成签到,获得积分10
20秒前
马麻薯完成签到,获得积分10
20秒前
小离完成签到,获得积分10
21秒前
希哩哩完成签到 ,获得积分10
22秒前
迅速大山完成签到,获得积分10
24秒前
三岁完成签到 ,获得积分10
29秒前
满意的伊完成签到,获得积分10
31秒前
喜悦蚂蚁完成签到,获得积分10
32秒前
SharonDu完成签到 ,获得积分10
32秒前
liuchang完成签到 ,获得积分10
35秒前
soda饼干完成签到 ,获得积分10
37秒前
可问春风完成签到,获得积分10
38秒前
Daybreak完成签到 ,获得积分10
44秒前
越野蟹完成签到,获得积分10
44秒前
50秒前
laber完成签到,获得积分0
51秒前
木拉发布了新的文献求助10
56秒前
雨后完成签到 ,获得积分10
56秒前
56秒前
科目三应助嘻嘻哈哈采纳,获得10
57秒前
能干靖儿应助嘻嘻哈哈采纳,获得40
57秒前
能干靖儿应助嘻嘻哈哈采纳,获得60
57秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
57秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
57秒前
kyle完成签到 ,获得积分10
1分钟前
三杠完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208