Physics-informed neural networks as surrogate models of hydrodynamic simulators

稳健性(进化) 大洪水 替代模型 人工神经网络 计算机科学 不确定度量化 机器学习 数据收集 人工智能 数据科学 数学 统计 基因 生物化学 哲学 化学 神学
作者
James Donnelly,Alireza Daneshkhah,Soroush Abolfathi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 168814-168814 被引量:125
标识
DOI:10.1016/j.scitotenv.2023.168814
摘要

In response to growing concerns surrounding the relationship between climate change and escalating flood risk, there is an increasing urgency to develop precise and rapid flood prediction models. Although high-resolution flood simulations have made notable advancements, they remain computationally expensive, underscoring the need for efficient machine learning surrogate models. As a result of sparse empirical observation and expensive data collection, there is a growing need for the models to perform effectively in 'small-data' contexts, a characteristic typical of many scientific problems. This research combines the latest developments in surrogate modelling and physics-informed machine learning to propose a novel Physics-Informed Neural Network-based surrogate model for hydrodynamic simulators governed by Shallow Water Equations. The proposed method incorporates physics-based prior information into the neural network structure by encoding the conservation of mass into the model without relying on calculating continuous derivatives in the loss function. The method is demonstrated for a high-resolution inland flood simulation model and a large-scale regional tidal model. The proposed method outperforms the existing state-of-the-art data-driven approaches by up to 25 %. This research demonstrates the benefits and robustness of physics-informed approaches in surrogate modelling for flood and hydroclimatic modelling problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
任性蘑菇完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
3秒前
Estella完成签到,获得积分10
3秒前
小冯爱吃屁完成签到,获得积分10
3秒前
4秒前
周一完成签到 ,获得积分10
6秒前
FashionBoy应助李卓航采纳,获得10
7秒前
7秒前
11秒前
11秒前
天天快乐应助严天飞采纳,获得10
12秒前
12秒前
baqiuzunzhe发布了新的文献求助10
13秒前
孝顺的觅风完成签到 ,获得积分10
13秒前
14秒前
Cyuan发布了新的文献求助10
14秒前
JRZ完成签到,获得积分10
15秒前
15秒前
不想晚睡完成签到,获得积分10
15秒前
16秒前
Sylvia发布了新的文献求助50
16秒前
Lia_Yee完成签到,获得积分10
16秒前
17秒前
asdfqwer发布了新的文献求助10
17秒前
可爱的稚晴完成签到,获得积分20
17秒前
进击的PhD完成签到,获得积分10
18秒前
19秒前
单纯无声完成签到 ,获得积分10
19秒前
21秒前
西西弗斯完成签到,获得积分10
23秒前
李卓航发布了新的文献求助10
25秒前
领导范儿应助甜野采纳,获得10
25秒前
25秒前
27秒前
29秒前
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716