Physics-informed neural networks as surrogate models of hydrodynamic simulators

稳健性(进化) 大洪水 替代模型 人工神经网络 计算机科学 不确定度量化 机器学习 数据收集 人工智能 数据科学 数学 统计 基因 生物化学 哲学 化学 神学
作者
James Donnelly,Alireza Daneshkhah,Soroush Abolfathi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 168814-168814 被引量:125
标识
DOI:10.1016/j.scitotenv.2023.168814
摘要

In response to growing concerns surrounding the relationship between climate change and escalating flood risk, there is an increasing urgency to develop precise and rapid flood prediction models. Although high-resolution flood simulations have made notable advancements, they remain computationally expensive, underscoring the need for efficient machine learning surrogate models. As a result of sparse empirical observation and expensive data collection, there is a growing need for the models to perform effectively in 'small-data' contexts, a characteristic typical of many scientific problems. This research combines the latest developments in surrogate modelling and physics-informed machine learning to propose a novel Physics-Informed Neural Network-based surrogate model for hydrodynamic simulators governed by Shallow Water Equations. The proposed method incorporates physics-based prior information into the neural network structure by encoding the conservation of mass into the model without relying on calculating continuous derivatives in the loss function. The method is demonstrated for a high-resolution inland flood simulation model and a large-scale regional tidal model. The proposed method outperforms the existing state-of-the-art data-driven approaches by up to 25 %. This research demonstrates the benefits and robustness of physics-informed approaches in surrogate modelling for flood and hydroclimatic modelling problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
玛卡发布了新的文献求助10
2秒前
3秒前
Freedom完成签到,获得积分10
3秒前
3秒前
齐天大圣发布了新的文献求助10
5秒前
JamesPei应助大胆的飞扬采纳,获得10
5秒前
碧蓝俊驰完成签到,获得积分10
7秒前
强子今天读文献了嘛完成签到,获得积分10
7秒前
hahaha完成签到 ,获得积分10
7秒前
7秒前
伶俐的小卓完成签到,获得积分10
7秒前
LSY发布了新的文献求助10
8秒前
深情安青应助北木南采纳,获得10
8秒前
慕容生完成签到,获得积分10
8秒前
8秒前
Reece完成签到,获得积分10
9秒前
10秒前
Hello应助Lmy采纳,获得10
10秒前
11秒前
爆米花应助Dean采纳,获得30
12秒前
善学以致用应助wr采纳,获得10
12秒前
清秀晓筠发布了新的文献求助30
12秒前
kai chen应助Mr采纳,获得10
14秒前
14秒前
淳于汲发布了新的文献求助10
14秒前
15秒前
水上汀州完成签到 ,获得积分10
15秒前
情怀应助ningning采纳,获得10
15秒前
15秒前
仲夏完成签到,获得积分10
16秒前
17秒前
17秒前
活泼的菱zi完成签到,获得积分10
17秒前
18秒前
jeonghan完成签到,获得积分10
18秒前
嘞是举仔发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516