Dynamic service function chains placement based on parallelized requests in edge computing environment

计算机科学 分布式计算 服务器 服务质量 连锁 异步通信 延迟(音频) 虚拟网络 GSM演进的增强数据速率 计算机网络 边缘计算 人工智能 心理学 电信 心理治疗师
作者
Chengjun Guo,Amin Rezaeipanah
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:35 (1) 被引量:7
标识
DOI:10.1002/ett.4905
摘要

Abstract The advent of Network Function Virtualization (NFV) technology brings flexible traffic engineering to edge computing environments. Online services in NFV are chained as Service Function Chains (SFCs), which consist of ordered sequences of Virtual Network Functions (VNFs). The SFC Placement (SFCP) problem is solved under Quality of Service (QoS) requirements and limited resource availability by directing traffic to the required VNFs. However, SFC assembly leads to high latency and network congestion by increasing the count of VNFs, which parallelized SFC can overcome this problem. With parallelizing an SFC request, independent VNFs are activated simultaneously and computational acceleration is realized by reducing the SFC length. Any pair of VNFs that do not conflict with traffic can be activated simultaneously. Most VNFs are deployed on distributed servers for load balancing, which makes SFC parallelization challenging. Meanwhile, the cost of merging/duplicating packets for parallelized SFCs between different servers is not negligible. Hence, in this article, Distributed Parallel Chaining (DPC) is proposed which is an algorithm based on Deep Reinforcement Learning (DRL) approaches. The DPC algorithm solves the SFCP problem to maximize the Long‐Term Expected Cumulative Reward (LTECR). DPC incorporates an Asynchronous Advantage Actor‐Critic (A3C) algorithm as a new approach based on DRL to increase the admission ability of future SFC requests by maximizing LTECR. The evaluation results show the effectiveness of the proposed algorithm from different aspects. Specifically, compared to the best existing approaches, DPC can reduce SFC latency by 8.7%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煤炭不甜发布了新的文献求助10
刚刚
1秒前
华仔应助明天会更好采纳,获得10
1秒前
顺利的琳发布了新的文献求助10
2秒前
3秒前
3秒前
nuonuoweng完成签到,获得积分10
3秒前
BOMB发布了新的文献求助30
4秒前
苗条世德完成签到,获得积分10
4秒前
4秒前
4秒前
Maize Man完成签到,获得积分10
4秒前
单纯寒凝发布了新的文献求助10
6秒前
6秒前
Ava应助称心凡霜采纳,获得10
7秒前
快乐小瑶发布了新的文献求助10
7秒前
7秒前
英俊的铭应助sxmt123456789采纳,获得30
8秒前
搜集达人应助伶俐的夜梦采纳,获得50
8秒前
煤炭不甜完成签到,获得积分10
8秒前
10秒前
万能图书馆应助矜持采纳,获得10
10秒前
kekehuang关注了科研通微信公众号
10秒前
10秒前
霸气若男发布了新的文献求助10
11秒前
孙嘉畯发布了新的文献求助10
11秒前
lbchanger完成签到 ,获得积分10
11秒前
Lisianthus发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
YE完成签到 ,获得积分10
12秒前
领导范儿应助下北沢采纳,获得10
13秒前
gaoww发布了新的文献求助10
13秒前
精明凡雁完成签到,获得积分10
13秒前
我是第一名完成签到,获得积分10
13秒前
13秒前
14秒前
宛雷雅发布了新的文献求助30
15秒前
冷风发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610713
求助须知:如何正确求助?哪些是违规求助? 4695216
关于积分的说明 14885929
捐赠科研通 4723170
什么是DOI,文献DOI怎么找? 2545217
邀请新用户注册赠送积分活动 1509998
关于科研通互助平台的介绍 1473110