Dynamic service function chains placement based on parallelized requests in edge computing environment

计算机科学 分布式计算 服务器 服务质量 连锁 异步通信 延迟(音频) 虚拟网络 GSM演进的增强数据速率 计算机网络 边缘计算 人工智能 心理学 电信 心理治疗师
作者
Chengjun Guo,Amin Rezaeipanah
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:35 (1) 被引量:7
标识
DOI:10.1002/ett.4905
摘要

Abstract The advent of Network Function Virtualization (NFV) technology brings flexible traffic engineering to edge computing environments. Online services in NFV are chained as Service Function Chains (SFCs), which consist of ordered sequences of Virtual Network Functions (VNFs). The SFC Placement (SFCP) problem is solved under Quality of Service (QoS) requirements and limited resource availability by directing traffic to the required VNFs. However, SFC assembly leads to high latency and network congestion by increasing the count of VNFs, which parallelized SFC can overcome this problem. With parallelizing an SFC request, independent VNFs are activated simultaneously and computational acceleration is realized by reducing the SFC length. Any pair of VNFs that do not conflict with traffic can be activated simultaneously. Most VNFs are deployed on distributed servers for load balancing, which makes SFC parallelization challenging. Meanwhile, the cost of merging/duplicating packets for parallelized SFCs between different servers is not negligible. Hence, in this article, Distributed Parallel Chaining (DPC) is proposed which is an algorithm based on Deep Reinforcement Learning (DRL) approaches. The DPC algorithm solves the SFCP problem to maximize the Long‐Term Expected Cumulative Reward (LTECR). DPC incorporates an Asynchronous Advantage Actor‐Critic (A3C) algorithm as a new approach based on DRL to increase the admission ability of future SFC requests by maximizing LTECR. The evaluation results show the effectiveness of the proposed algorithm from different aspects. Specifically, compared to the best existing approaches, DPC can reduce SFC latency by 8.7%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助von采纳,获得10
1秒前
一玮完成签到 ,获得积分10
1秒前
心心子完成签到 ,获得积分10
2秒前
mzp发布了新的文献求助10
2秒前
2秒前
2秒前
炙热初翠发布了新的文献求助10
3秒前
3秒前
清爽的乐曲完成签到,获得积分10
3秒前
CipherSage应助GQL采纳,获得10
3秒前
Ava应助陈11采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
ding应助von采纳,获得10
4秒前
天天快乐应助羊毛采纳,获得10
4秒前
高高烨磊发布了新的文献求助10
4秒前
舒适向薇完成签到 ,获得积分10
5秒前
Anker完成签到,获得积分10
6秒前
dlfg完成签到,获得积分10
6秒前
完美世界应助乔乔采纳,获得10
7秒前
7秒前
义气凡阳发布了新的文献求助10
7秒前
英俊的铭应助满锅采纳,获得10
7秒前
Hello应助叮叮当当当采纳,获得10
10秒前
哭泣飞瑶完成签到 ,获得积分20
10秒前
JamesPei应助zhousy采纳,获得10
10秒前
10秒前
10秒前
情怀应助陈圈圈采纳,获得10
10秒前
chen给chen的求助进行了留言
11秒前
Jasper应助暴躁的从露采纳,获得10
11秒前
12秒前
12秒前
充电宝应助有魅力元蝶采纳,获得10
12秒前
陈一一完成签到,获得积分10
12秒前
12秒前
科研通AI6应助MMMMM采纳,获得10
13秒前
13秒前
高高烨磊完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603