清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BOA

分割 脂肪组织 计算机科学 皮下脂肪组织 DICOM 医学 胸腔 放射科 人工智能 解剖 内科学
作者
Johannes Haubold,Giulia Baldini,Vicky Parmar,Benedikt M. Schaarschmidt,Sven Koitka,Lennard Kroll,Natalie van Landeghem,Lale Umutlu,Michael Forsting,Felix Nensa,René Hosch
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (6): 433-441 被引量:7
标识
DOI:10.1097/rli.0000000000001040
摘要

Purpose The study aimed to develop the open-source body and organ analysis (BOA), a comprehensive computed tomography (CT) image segmentation algorithm with a focus on workflow integration. Methods The BOA combines 2 segmentation algorithms: body composition analysis (BCA) and TotalSegmentator. The BCA was trained with the nnU-Net framework using a dataset including 300 CT examinations. The CTs were manually annotated with 11 semantic body regions: subcutaneous tissue, muscle, bone, abdominal cavity, thoracic cavity, glands, mediastinum, pericardium, breast implant, brain, and spinal cord. The models were trained using 5-fold cross-validation, and at inference time, an ensemble was used. Afterward, the segmentation efficiency was evaluated on a separate test set comprising 60 CT scans. In a postprocessing step, a tissue segmentation (muscle, subcutaneous adipose tissue, visceral adipose tissue, intermuscular adipose tissue, epicardial adipose tissue, and paracardial adipose tissue) is created by subclassifying the body regions. The BOA combines this algorithm and the open-source segmentation software TotalSegmentator to have an all-in-one comprehensive selection of segmentations. In addition, it integrates into clinical workflows as a DICOM node–triggered service using the open-source Orthanc research PACS (Picture Archiving and Communication System) server to make the automated segmentation algorithms available to clinicians. The BCA model's performance was evaluated using the Sørensen-Dice score. Finally, the segmentations from the 3 different tools (BCA, TotalSegmentator, and BOA) were compared by assessing the overall percentage of the segmented human body on a separate cohort of 150 whole-body CT scans. Results The results showed that the BCA outperformed the previous publication, achieving a higher Sørensen-Dice score for the previously existing classes, including subcutaneous tissue (0.971 vs 0.962), muscle (0.959 vs 0.933), abdominal cavity (0.983 vs 0.973), thoracic cavity (0.982 vs 0.965), bone (0.961 vs 0.942), and an overall good segmentation efficiency for newly introduced classes: brain (0.985), breast implant (0.943), glands (0.766), mediastinum (0.880), pericardium (0.964), and spinal cord (0.896). All in all, it achieved a 0.935 average Sørensen-Dice score, which is comparable to the one of the TotalSegmentator (0.94). The TotalSegmentator had a mean voxel body coverage of 31% ± 6%, whereas BCA had a coverage of 75% ± 6% and BOA achieved 93% ± 2%. Conclusions The open-source BOA merges different segmentation algorithms with a focus on workflow integration through DICOM node integration, offering a comprehensive body segmentation in CT images with a high coverage of the body volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
naczx完成签到,获得积分0
7秒前
32秒前
38秒前
毛豆应助草木采纳,获得10
42秒前
白云完成签到,获得积分10
42秒前
迈克老狼完成签到 ,获得积分10
55秒前
wang5945完成签到 ,获得积分10
58秒前
矢思然发布了新的文献求助10
1分钟前
zai完成签到 ,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
矢思然完成签到,获得积分10
1分钟前
英俊的铭应助草木采纳,获得10
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
1分钟前
doclarrin完成签到 ,获得积分10
1分钟前
月亮发布了新的文献求助10
1分钟前
开放访天完成签到 ,获得积分10
1分钟前
月亮完成签到,获得积分10
1分钟前
玩命的无春完成签到 ,获得积分10
1分钟前
科研Mayormm完成签到 ,获得积分10
1分钟前
FloppyWow完成签到 ,获得积分10
2分钟前
华仔应助不安的凡梦采纳,获得10
2分钟前
qcck完成签到,获得积分10
2分钟前
2分钟前
毛豆应助草木采纳,获得10
2分钟前
prosperp应助大吴克采纳,获得10
2分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
谨慎的雨琴完成签到,获得积分10
2分钟前
Behappy完成签到 ,获得积分10
3分钟前
3分钟前
草木完成签到,获得积分10
3分钟前
3分钟前
zhuchenglu完成签到,获得积分10
3分钟前
yangdaodan发布了新的文献求助10
3分钟前
Yuuuu完成签到 ,获得积分10
3分钟前
3分钟前
巫巫巫巫巫完成签到 ,获得积分10
3分钟前
3分钟前
苗条的傲丝完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003778
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477