Targeting protein conformations with small molecules to control protein complexes

小分子 药物发现 合理设计 蛋白质功能 化学 蛋白质-蛋白质相互作用 功能(生物学) 计算生物学 生物物理学 蛋白质结构 生物化学 细胞生物学 生物 基因 遗传学
作者
Emmanouil Zacharioudakis,Evripidis Gavathiotis
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:47 (12): 1023-1037 被引量:5
标识
DOI:10.1016/j.tibs.2022.07.002
摘要

Small molecules can control protein oligomerization by stabilizing or promoting a particular conformational state. Small molecules that turn on and off conformational changes provided important insights into protein function and biological mechanisms. Αdvances in several methodologies enabled the discovery of small-molecule activators and inhibitors of protein conformational changes. A structure-guided drug discovery platform for targeting conformational plasticity of proteins with small-molecule modulators will accelerate the discovery of novel chemical probes and drug candidates in diverse biological mechanisms. Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein–protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach. Here, we discuss such recent examples, focusing on the mechanism of protein conformational switching and its regulation by small molecules. We emphasize the rational approaches to control protein oligomerization with small molecules that offer exciting opportunities for investigation of novel biological mechanisms and drug discovery. Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein–protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach. Here, we discuss such recent examples, focusing on the mechanism of protein conformational switching and its regulation by small molecules. We emphasize the rational approaches to control protein oligomerization with small molecules that offer exciting opportunities for investigation of novel biological mechanisms and drug discovery. typically refers to a binding site that is spatially and topologically distinct from orthosteric binding sites. Chemical perturbations by ligands known as allosteric modulators or mutations at allosteric sites can modulate the activity of orthosteric binding sites. combination of chemical and genetic methods commonly used to enhance selectivity and affinity of already existing ligands towards a specific isoform or conformation of the protein target. Typically, this approach relies on protein engineering for the generation of a ‘hole’ in the binding site of ligand, usually by substituting bulky residues with less bulky residues. The ligand is also chemically modified by generating a ‘bump’, which confers steric complementarity for the engineered protein. 3D shape of a protein that is defined by the position of its constituent atoms in space, which arises from the bonding and interactions within the protein structure. all the distinct conformations that a protein can have. Protein molecules are partitioned in several distinct conformations, which are in dynamic equilibrium with each other. ability of a protein to adopt several distinct conformations. phenomenon whereby the affinity of a ligand or a protein subunit toward a protein is increased (positive) or decreased (negative) upon binding of another ligand or protein subunit to the protein, albeit at a spatially distinct binding site. library of structurally distinct small molecules conjugated with a DNA sequence that serves as an identification barcode using high-throughput sequencing. Such libraries commonly find applications in experimental high-throughput screening drug discovery campaigns. ligand or small molecule that binds to the same binding site with an agonist in a constitutively active receptor protein and decreases its activity. computational approach that utilizes algorithms to facilitate pattern recognition and classification based on already existing data with the aim of predicting the likelihood of a particular outcome in a new set of data. It is used in computational biology to generate structural models and drug design. typically refers to a binding site where endogenous ligands and substrates bind. defined spatial orientation of steric and electronic features of a ligand required for the molecular recognition and specific interaction of the ligand with its protein target. Such steric and electronic features include hydrophobic centroids, aromatic rings, hydrogen bond donor/acceptor, anions, and cations. chemical moiety of a small-molecule ligand that can react with amino acids (e.g., cysteine) and form covalent bonds between the protein and the ligand. mathematical function used in protein–ligand docking studies that aims to predict the likelihood of binding for a ligand toward its protein target by evaluating the favorable intermolecular interactions between the ligand and the protein. Scoring functions provide a numerical indicator that is commonly used in in silico screening campaigns to rank different ligands based on their likelihood of binding to the protein target. drug discovery approach that uses the structure of a protein as a starting point and aims to identify ligands that have complementary molecular properties with a specific region of the protein target. Structure-based ligand discovery utilizes in silico methods to virtually screen libraries of compounds or biochemical methods that allow the physical screening of compounds using physicochemical readouts in vitro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Monkwy发布了新的文献求助10
1秒前
1秒前
X123完成签到 ,获得积分10
3秒前
xiaolianwheat发布了新的文献求助10
3秒前
WANGJD发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
慧慧发布了新的文献求助10
5秒前
windows发布了新的文献求助10
5秒前
鲨鱼娃完成签到 ,获得积分10
5秒前
烟酒僧发布了新的文献求助10
5秒前
mo发布了新的文献求助10
6秒前
6秒前
七七完成签到,获得积分10
7秒前
xiying完成签到 ,获得积分10
7秒前
让我睡完成签到,获得积分10
7秒前
8秒前
啦啦啦啦完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
11秒前
勤奋沛儿完成签到,获得积分20
11秒前
wyb完成签到 ,获得积分10
11秒前
保护番茄完成签到,获得积分10
11秒前
沉默乐安完成签到,获得积分10
12秒前
宋冬彦完成签到 ,获得积分10
12秒前
CoderHao发布了新的文献求助10
13秒前
顾矜应助化学小学生采纳,获得10
13秒前
善学以致用应助烟酒僧采纳,获得10
14秒前
豆豆完成签到,获得积分10
14秒前
空座位完成签到,获得积分10
14秒前
wxy发布了新的文献求助30
14秒前
theThreeMagi发布了新的文献求助10
14秒前
勤奋沛儿发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429055
求助须知:如何正确求助?哪些是违规求助? 4542625
关于积分的说明 14181735
捐赠科研通 4460343
什么是DOI,文献DOI怎么找? 2445678
邀请新用户注册赠送积分活动 1436859
关于科研通互助平台的介绍 1414080