亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Targeting protein conformations with small molecules to control protein complexes

小分子 药物发现 合理设计 蛋白质功能 化学 蛋白质-蛋白质相互作用 功能(生物学) 计算生物学 生物物理学 蛋白质结构 生物化学 细胞生物学 生物 基因 遗传学
作者
Emmanouil Zacharioudakis,Evripidis Gavathiotis
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:47 (12): 1023-1037 被引量:5
标识
DOI:10.1016/j.tibs.2022.07.002
摘要

Small molecules can control protein oligomerization by stabilizing or promoting a particular conformational state. Small molecules that turn on and off conformational changes provided important insights into protein function and biological mechanisms. Αdvances in several methodologies enabled the discovery of small-molecule activators and inhibitors of protein conformational changes. A structure-guided drug discovery platform for targeting conformational plasticity of proteins with small-molecule modulators will accelerate the discovery of novel chemical probes and drug candidates in diverse biological mechanisms. Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein–protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach. Here, we discuss such recent examples, focusing on the mechanism of protein conformational switching and its regulation by small molecules. We emphasize the rational approaches to control protein oligomerization with small molecules that offer exciting opportunities for investigation of novel biological mechanisms and drug discovery. Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein–protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach. Here, we discuss such recent examples, focusing on the mechanism of protein conformational switching and its regulation by small molecules. We emphasize the rational approaches to control protein oligomerization with small molecules that offer exciting opportunities for investigation of novel biological mechanisms and drug discovery. typically refers to a binding site that is spatially and topologically distinct from orthosteric binding sites. Chemical perturbations by ligands known as allosteric modulators or mutations at allosteric sites can modulate the activity of orthosteric binding sites. combination of chemical and genetic methods commonly used to enhance selectivity and affinity of already existing ligands towards a specific isoform or conformation of the protein target. Typically, this approach relies on protein engineering for the generation of a ‘hole’ in the binding site of ligand, usually by substituting bulky residues with less bulky residues. The ligand is also chemically modified by generating a ‘bump’, which confers steric complementarity for the engineered protein. 3D shape of a protein that is defined by the position of its constituent atoms in space, which arises from the bonding and interactions within the protein structure. all the distinct conformations that a protein can have. Protein molecules are partitioned in several distinct conformations, which are in dynamic equilibrium with each other. ability of a protein to adopt several distinct conformations. phenomenon whereby the affinity of a ligand or a protein subunit toward a protein is increased (positive) or decreased (negative) upon binding of another ligand or protein subunit to the protein, albeit at a spatially distinct binding site. library of structurally distinct small molecules conjugated with a DNA sequence that serves as an identification barcode using high-throughput sequencing. Such libraries commonly find applications in experimental high-throughput screening drug discovery campaigns. ligand or small molecule that binds to the same binding site with an agonist in a constitutively active receptor protein and decreases its activity. computational approach that utilizes algorithms to facilitate pattern recognition and classification based on already existing data with the aim of predicting the likelihood of a particular outcome in a new set of data. It is used in computational biology to generate structural models and drug design. typically refers to a binding site where endogenous ligands and substrates bind. defined spatial orientation of steric and electronic features of a ligand required for the molecular recognition and specific interaction of the ligand with its protein target. Such steric and electronic features include hydrophobic centroids, aromatic rings, hydrogen bond donor/acceptor, anions, and cations. chemical moiety of a small-molecule ligand that can react with amino acids (e.g., cysteine) and form covalent bonds between the protein and the ligand. mathematical function used in protein–ligand docking studies that aims to predict the likelihood of binding for a ligand toward its protein target by evaluating the favorable intermolecular interactions between the ligand and the protein. Scoring functions provide a numerical indicator that is commonly used in in silico screening campaigns to rank different ligands based on their likelihood of binding to the protein target. drug discovery approach that uses the structure of a protein as a starting point and aims to identify ligands that have complementary molecular properties with a specific region of the protein target. Structure-based ligand discovery utilizes in silico methods to virtually screen libraries of compounds or biochemical methods that allow the physical screening of compounds using physicochemical readouts in vitro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Taro发布了新的文献求助10
1秒前
慌慌完成签到 ,获得积分10
1秒前
慕青应助冷酷的依霜采纳,获得10
5秒前
newplayer发布了新的文献求助20
11秒前
那咋了完成签到,获得积分10
13秒前
重重发布了新的文献求助10
14秒前
roe完成签到 ,获得积分10
14秒前
15秒前
共享精神应助尊敬凝丹采纳,获得30
17秒前
微笑的天抒完成签到,获得积分10
17秒前
22秒前
23秒前
仔仔完成签到 ,获得积分10
26秒前
wang发布了新的文献求助10
27秒前
阿楠发布了新的文献求助10
29秒前
JL完成签到,获得积分10
31秒前
31秒前
英俊的铭应助盐焗小崔采纳,获得10
35秒前
zxcvbnm完成签到,获得积分10
38秒前
慕青应助李小猫采纳,获得10
40秒前
Fushanyu完成签到 ,获得积分10
49秒前
李小猫完成签到,获得积分10
53秒前
56秒前
CipherSage应助ceeray23采纳,获得20
56秒前
jh完成签到 ,获得积分10
57秒前
Lin完成签到 ,获得积分10
58秒前
薛雨佳完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李小猫发布了新的文献求助10
1分钟前
renyi完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助wang采纳,获得10
1分钟前
1分钟前
小小猪完成签到,获得积分10
1分钟前
1分钟前
张环完成签到,获得积分10
1分钟前
所所应助HDrinnk采纳,获得10
1分钟前
racill完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463119
求助须知:如何正确求助?哪些是违规求助? 4567919
关于积分的说明 14311980
捐赠科研通 4493749
什么是DOI,文献DOI怎么找? 2461864
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426051