DeepCAN: A Modular Deep Learning System for Automated Cell Counting and Viability Analysis

计算机科学 人工智能 深度学习 卷积神经网络 活力测定 模式识别(心理学) 分割 细胞仪 模块化设计 流式细胞术 细胞 生物 遗传学 操作系统
作者
Furkan Eren,Mete Aslan,Dilek Kanarya,Yiğit Uysallı,Musa Aydın,Berna Kıraz,Ömer Aydın,Alper Kıraz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5575-5583 被引量:9
标识
DOI:10.1109/jbhi.2022.3203893
摘要

Precise and quick monitoring of key cytometric features such as cell count, size, morphology, and DNA content is crucial in life science applications. Traditionally, image cytometry relies on visual inspection of hemocytometers. This approach is error-prone due to operator subjectivity. Recently, deep learning approaches have emerged as powerful tools enabling quick and accurate image cytometry applicable to different cell types. Leading to simpler, compact, and affordable solutions, these approaches revealed image cytometry as a viable alternative to flow cytometry or Coulter counting. In this study, we demonstrate a modular deep learning system, DeepCAN, providing a complete solution for automated cell counting and viability analysis. DeepCAN employs three different neural network blocks called Parallel Segmenter, Cluster CNN, and Viability CNN that are trained for initial segmentation, cluster separation, and viability analysis. Parallel Segmenter and Cluster CNN blocks achieve accurate segmentation of individual cells while Viability CNN block performs viability classification. A modified U-Net network, a well-known deep neural network model for bioimage analysis, is used in Parallel Segmenter while LeNet-5 architecture and its modified version Opto-Net are used for Cluster CNN and Viability CNN, respectively. We train the Parallel Segmenter using 15 images of A2780 cells and 5 images of yeasts cells, containing, in total, 14742 individual cell images. Similarly, 6101 and 5900 A2780 cell images are employed for training Cluster CNN and Viability CNN models, respectively. 2514 individual A2780 cell images are used to test the overall segmentation performance of Parallel Segmenter combined with Cluster CNN, revealing high Precision/Recall/F1-Score values of 96.52%/96.45%/98.06%, respectively. Cell counting/viability performance of DeepCAN is tested with A2780 (2514 cells), A549 (601 cells), Colo (356 cells), and MDA-MB-231 (887 cells) cell images revealing high analysis accuracies of 96.76%/99.02%, 93.82%/95.93%, and 92.18%/97.90%, 85.32%/97.40%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助杨春天采纳,获得10
1秒前
戾鸢爱吃饭完成签到,获得积分10
1秒前
儒雅太君发布了新的文献求助10
2秒前
zack完成签到,获得积分10
2秒前
充电宝应助yyq617569158采纳,获得30
2秒前
zhu发布了新的文献求助10
2秒前
2秒前
华仔应助友好亚男采纳,获得10
2秒前
后陡门的夏天完成签到 ,获得积分10
4秒前
4秒前
didida完成签到,获得积分10
4秒前
xinyi发布了新的文献求助10
5秒前
5秒前
6秒前
JIU夭完成签到,获得积分10
6秒前
7秒前
7秒前
manman完成签到,获得积分10
7秒前
7秒前
hgl123发布了新的文献求助10
8秒前
8秒前
钱嘉裕完成签到 ,获得积分10
8秒前
木仔发布了新的文献求助30
9秒前
10秒前
divedown发布了新的文献求助10
10秒前
万能图书馆应助yyh采纳,获得10
10秒前
专注学习发布了新的文献求助10
11秒前
jwhardaway发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
杨春天发布了新的文献求助10
13秒前
斯文败类应助wwuxinhui采纳,获得10
13秒前
儒雅太君完成签到,获得积分10
13秒前
14秒前
15秒前
17秒前
舒适嘉熙完成签到,获得积分10
17秒前
SAINT发布了新的文献求助20
17秒前
zdx1022完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943