清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepCAN: A Modular Deep Learning System for Automated Cell Counting and Viability Analysis

计算机科学 人工智能 深度学习 卷积神经网络 活力测定 模式识别(心理学) 分割 细胞仪 模块化设计 流式细胞术 细胞 生物 遗传学 操作系统
作者
Furkan Eren,Mete Aslan,Dilek Kanarya,Yiğit Uysallı,Musa Aydın,Berna Kıraz,Ömer Aydın,Alper Kıraz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5575-5583 被引量:9
标识
DOI:10.1109/jbhi.2022.3203893
摘要

Precise and quick monitoring of key cytometric features such as cell count, size, morphology, and DNA content is crucial in life science applications. Traditionally, image cytometry relies on visual inspection of hemocytometers. This approach is error-prone due to operator subjectivity. Recently, deep learning approaches have emerged as powerful tools enabling quick and accurate image cytometry applicable to different cell types. Leading to simpler, compact, and affordable solutions, these approaches revealed image cytometry as a viable alternative to flow cytometry or Coulter counting. In this study, we demonstrate a modular deep learning system, DeepCAN, providing a complete solution for automated cell counting and viability analysis. DeepCAN employs three different neural network blocks called Parallel Segmenter, Cluster CNN, and Viability CNN that are trained for initial segmentation, cluster separation, and viability analysis. Parallel Segmenter and Cluster CNN blocks achieve accurate segmentation of individual cells while Viability CNN block performs viability classification. A modified U-Net network, a well-known deep neural network model for bioimage analysis, is used in Parallel Segmenter while LeNet-5 architecture and its modified version Opto-Net are used for Cluster CNN and Viability CNN, respectively. We train the Parallel Segmenter using 15 images of A2780 cells and 5 images of yeasts cells, containing, in total, 14742 individual cell images. Similarly, 6101 and 5900 A2780 cell images are employed for training Cluster CNN and Viability CNN models, respectively. 2514 individual A2780 cell images are used to test the overall segmentation performance of Parallel Segmenter combined with Cluster CNN, revealing high Precision/Recall/F1-Score values of 96.52%/96.45%/98.06%, respectively. Cell counting/viability performance of DeepCAN is tested with A2780 (2514 cells), A549 (601 cells), Colo (356 cells), and MDA-MB-231 (887 cells) cell images revealing high analysis accuracies of 96.76%/99.02%, 93.82%/95.93%, and 92.18%/97.90%, 85.32%/97.40%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恶恶么v发布了新的文献求助10
2秒前
13秒前
ATK20000完成签到 ,获得积分10
13秒前
tumankol完成签到 ,获得积分10
21秒前
39秒前
完美世界应助kouryoufu采纳,获得10
45秒前
56秒前
1分钟前
kouryoufu发布了新的文献求助10
1分钟前
1分钟前
kouryoufu发布了新的文献求助10
1分钟前
名侦探柯基完成签到 ,获得积分10
1分钟前
大模型应助迷你的秋双采纳,获得10
1分钟前
H t完成签到,获得积分10
1分钟前
xiuxiuzhang完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Java完成签到,获得积分10
1分钟前
迷你的秋双完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
大个应助恶恶么v采纳,获得10
2分钟前
2分钟前
2分钟前
恶恶么v发布了新的文献求助10
2分钟前
9527完成签到,获得积分10
2分钟前
研友_08oa3n完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
Antonio完成签到 ,获得积分10
2分钟前
chinzz应助雪山飞龙采纳,获得10
2分钟前
ziyewutong完成签到,获得积分10
3分钟前
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
夕阳space发布了新的文献求助30
3分钟前
GQ完成签到,获得积分10
3分钟前
coolplex完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041200
关于积分的说明 8984046
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497172
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714