DeepCAN: A Modular Deep Learning System for Automated Cell Counting and Viability Analysis

计算机科学 人工智能 深度学习 卷积神经网络 活力测定 模式识别(心理学) 分割 细胞仪 模块化设计 流式细胞术 细胞 生物 遗传学 操作系统
作者
Furkan Eren,Mete Aslan,Dilek Kanarya,Yiğit Uysallı,Musa Aydın,Berna Kıraz,Ömer Aydın,Alper Kıraz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5575-5583 被引量:9
标识
DOI:10.1109/jbhi.2022.3203893
摘要

Precise and quick monitoring of key cytometric features such as cell count, size, morphology, and DNA content is crucial in life science applications. Traditionally, image cytometry relies on visual inspection of hemocytometers. This approach is error-prone due to operator subjectivity. Recently, deep learning approaches have emerged as powerful tools enabling quick and accurate image cytometry applicable to different cell types. Leading to simpler, compact, and affordable solutions, these approaches revealed image cytometry as a viable alternative to flow cytometry or Coulter counting. In this study, we demonstrate a modular deep learning system, DeepCAN, providing a complete solution for automated cell counting and viability analysis. DeepCAN employs three different neural network blocks called Parallel Segmenter, Cluster CNN, and Viability CNN that are trained for initial segmentation, cluster separation, and viability analysis. Parallel Segmenter and Cluster CNN blocks achieve accurate segmentation of individual cells while Viability CNN block performs viability classification. A modified U-Net network, a well-known deep neural network model for bioimage analysis, is used in Parallel Segmenter while LeNet-5 architecture and its modified version Opto-Net are used for Cluster CNN and Viability CNN, respectively. We train the Parallel Segmenter using 15 images of A2780 cells and 5 images of yeasts cells, containing, in total, 14742 individual cell images. Similarly, 6101 and 5900 A2780 cell images are employed for training Cluster CNN and Viability CNN models, respectively. 2514 individual A2780 cell images are used to test the overall segmentation performance of Parallel Segmenter combined with Cluster CNN, revealing high Precision/Recall/F1-Score values of 96.52%/96.45%/98.06%, respectively. Cell counting/viability performance of DeepCAN is tested with A2780 (2514 cells), A549 (601 cells), Colo (356 cells), and MDA-MB-231 (887 cells) cell images revealing high analysis accuracies of 96.76%/99.02%, 93.82%/95.93%, and 92.18%/97.90%, 85.32%/97.40%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
peikyang发布了新的文献求助10
1秒前
藤原拓海完成签到,获得积分10
1秒前
π1完成签到 ,获得积分10
1秒前
zhangqi发布了新的文献求助10
1秒前
CCL应助wjj采纳,获得20
2秒前
2秒前
单于天宇完成签到,获得积分10
2秒前
2秒前
畅快的南风完成签到,获得积分10
3秒前
猪猪hero完成签到,获得积分10
3秒前
要减肥冰菱完成签到,获得积分10
3秒前
肖静茹完成签到,获得积分20
3秒前
情怀应助啾啾咪咪采纳,获得10
4秒前
奥里给完成签到 ,获得积分10
4秒前
DQ8733完成签到,获得积分10
4秒前
AAAAAAAAAAA发布了新的文献求助10
5秒前
5秒前
鱼与树发布了新的文献求助10
5秒前
sun完成签到,获得积分20
5秒前
lbw完成签到 ,获得积分10
6秒前
领导范儿应助朴素篮球采纳,获得10
6秒前
小刘不笨发布了新的文献求助10
6秒前
6秒前
大方的雪曼完成签到,获得积分10
6秒前
詭詐应助西洲采纳,获得10
6秒前
7秒前
zhangting发布了新的文献求助10
7秒前
玉9989完成签到,获得积分20
7秒前
大方小白发布了新的文献求助10
7秒前
xiaowang完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
轩辕德地发布了新的文献求助10
8秒前
FashionBoy应助chinning采纳,获得10
8秒前
shaohua2011完成签到,获得积分10
8秒前
快乐小白菜应助velpro采纳,获得10
8秒前
舒服的井完成签到,获得积分10
9秒前
脑洞疼应助要减肥冰菱采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678