亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepCAN: A Modular Deep Learning System for Automated Cell Counting and Viability Analysis

计算机科学 人工智能 深度学习 卷积神经网络 活力测定 模式识别(心理学) 分割 细胞仪 模块化设计 流式细胞术 细胞 生物 遗传学 操作系统
作者
Furkan Eren,Mete Aslan,Dilek Kanarya,Yiğit Uysallı,Musa Aydın,Berna Kıraz,Ömer Aydın,Alper Kıraz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5575-5583 被引量:16
标识
DOI:10.1109/jbhi.2022.3203893
摘要

Precise and quick monitoring of key cytometric features such as cell count, size, morphology, and DNA content is crucial in life science applications. Traditionally, image cytometry relies on visual inspection of hemocytometers. This approach is error-prone due to operator subjectivity. Recently, deep learning approaches have emerged as powerful tools enabling quick and accurate image cytometry applicable to different cell types. Leading to simpler, compact, and affordable solutions, these approaches revealed image cytometry as a viable alternative to flow cytometry or Coulter counting. In this study, we demonstrate a modular deep learning system, DeepCAN, providing a complete solution for automated cell counting and viability analysis. DeepCAN employs three different neural network blocks called Parallel Segmenter, Cluster CNN, and Viability CNN that are trained for initial segmentation, cluster separation, and viability analysis. Parallel Segmenter and Cluster CNN blocks achieve accurate segmentation of individual cells while Viability CNN block performs viability classification. A modified U-Net network, a well-known deep neural network model for bioimage analysis, is used in Parallel Segmenter while LeNet-5 architecture and its modified version Opto-Net are used for Cluster CNN and Viability CNN, respectively. We train the Parallel Segmenter using 15 images of A2780 cells and 5 images of yeasts cells, containing, in total, 14742 individual cell images. Similarly, 6101 and 5900 A2780 cell images are employed for training Cluster CNN and Viability CNN models, respectively. 2514 individual A2780 cell images are used to test the overall segmentation performance of Parallel Segmenter combined with Cluster CNN, revealing high Precision/Recall/F1-Score values of 96.52%/96.45%/98.06%, respectively. Cell counting/viability performance of DeepCAN is tested with A2780 (2514 cells), A549 (601 cells), Colo (356 cells), and MDA-MB-231 (887 cells) cell images revealing high analysis accuracies of 96.76%/99.02%, 93.82%/95.93%, and 92.18%/97.90%, 85.32%/97.40%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
abc完成签到 ,获得积分10
1分钟前
lixuebin完成签到 ,获得积分10
2分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
2分钟前
3分钟前
狂奔弟弟发布了新的文献求助10
3分钟前
狂奔弟弟完成签到,获得积分10
3分钟前
a61完成签到,获得积分10
3分钟前
4分钟前
zsc发布了新的文献求助10
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
MchemG完成签到,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
沐雨微寒完成签到,获得积分10
5分钟前
科研通AI6应助马良采纳,获得10
5分钟前
科研通AI2S应助hairgod采纳,获得10
6分钟前
hairgod完成签到,获得积分10
7分钟前
Jasper应助科研通管家采纳,获得10
7分钟前
8分钟前
马良发布了新的文献求助10
8分钟前
科研通AI5应助马良采纳,获得10
9分钟前
bkagyin应助狂奔弟弟采纳,获得10
9分钟前
9分钟前
9分钟前
狂奔弟弟发布了新的文献求助10
9分钟前
kingcoffee完成签到 ,获得积分10
9分钟前
斯文败类应助平淡的雁桃采纳,获得10
9分钟前
9分钟前
马良发布了新的文献求助10
9分钟前
平淡的雁桃完成签到,获得积分10
9分钟前
9分钟前
9分钟前
科研通AI5应助SarahG采纳,获得30
11分钟前
Owen应助科研通管家采纳,获得10
11分钟前
11分钟前
周同学发布了新的文献求助10
11分钟前
11分钟前
P_Chem完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582292
求助须知:如何正确求助?哪些是违规求助? 4000077
关于积分的说明 12382091
捐赠科研通 3674945
什么是DOI,文献DOI怎么找? 2025541
邀请新用户注册赠送积分活动 1059261
科研通“疑难数据库(出版商)”最低求助积分说明 945875