A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network

人工神经网络 概率逻辑 机器学习 人工智能 计算机科学 概率神经网络 时滞神经网络
作者
Taotao Zhou,Shan Jiang,Te Han,Shun‐Peng Zhu,Yinan Cai
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:166: 107234-107234 被引量:88
标识
DOI:10.1016/j.ijfatigue.2022.107234
摘要

Machine learning has drawn growing attention from the areas of fatigue, fracture, and structural integrity. However, most current studies are fully data-driven and may contradict the underpinning physical knowledge. To address this issue, we propose a physically consistent framework for fatigue life prediction that uses a probabilistic physics-informed neural network (PINN) to incorporate the physics underpinning the fatigue mechanism. Particularly, we consider the scatter of the fatigue life using a probabilistic neural network with the output to parametrize the fatigue life distribution. Then use neural networks' inherent backpropagation capabilities to automatically compute the derivatives that represent the physical knowledge. Finally, construct a composite loss function to encode the derivatives with certain physical constraints and uses a negative log-likelihood function to consider both failure data and run-out data. This enforces the network training process to learn a continuous function that describes the stress-life relationship satisfying both experimental data and physical knowledge. We demonstrate the proposed framework with sensitivity analysis and a comparison to the fully data-driven neural networks and the conventional statistical methods using the fatigue test data of three different materials. The results show that the proposed framework has a robust performance to effectively reflect the underlying physical knowledge and prevent overfitting issues. The findings provide a better understanding of neural networks’ application to fatigue life prediction and suggest that one should be cautious when using a fully data-driven approach in scientific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
棉花糖吖吖吖完成签到 ,获得积分10
1秒前
tutu发布了新的文献求助10
3秒前
4秒前
4秒前
加快步伐发布了新的文献求助10
4秒前
酷波er应助欢喜的晓霜采纳,获得10
5秒前
Revie完成签到 ,获得积分10
6秒前
JunZhuoXiao发布了新的文献求助10
7秒前
9秒前
諵十一完成签到,获得积分10
9秒前
纪鹏飞完成签到,获得积分10
10秒前
10秒前
Hengjian_Pu发布了新的文献求助10
11秒前
13秒前
13秒前
melon完成签到,获得积分10
15秒前
reds发布了新的文献求助10
15秒前
000发布了新的文献求助10
16秒前
大个应助啦啦啦采纳,获得30
17秒前
17秒前
Revie发布了新的文献求助10
17秒前
18秒前
混子完成签到,获得积分10
18秒前
李可爱发布了新的文献求助10
20秒前
21秒前
wy完成签到,获得积分10
22秒前
23秒前
香蕉觅云应助雪雪儿采纳,获得10
24秒前
彭于晏应助悲凉的妙松采纳,获得10
26秒前
27秒前
28秒前
28秒前
28秒前
29秒前
29秒前
29秒前
Alexander完成签到,获得积分20
29秒前
蒲云海发布了新的文献求助10
31秒前
李健应助哦啦啦采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309