A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network

人工神经网络 概率逻辑 机器学习 人工智能 计算机科学 概率神经网络 时滞神经网络
作者
Taotao Zhou,Shan Jiang,Te Han,Shun‐Peng Zhu,Yinan Cai
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:166: 107234-107234 被引量:66
标识
DOI:10.1016/j.ijfatigue.2022.107234
摘要

Machine learning has drawn growing attention from the areas of fatigue, fracture, and structural integrity. However, most current studies are fully data-driven and may contradict the underpinning physical knowledge. To address this issue, we propose a physically consistent framework for fatigue life prediction that uses a probabilistic physics-informed neural network (PINN) to incorporate the physics underpinning the fatigue mechanism. Particularly, we consider the scatter of the fatigue life using a probabilistic neural network with the output to parametrize the fatigue life distribution. Then use neural networks' inherent backpropagation capabilities to automatically compute the derivatives that represent the physical knowledge. Finally, construct a composite loss function to encode the derivatives with certain physical constraints and uses a negative log-likelihood function to consider both failure data and run-out data. This enforces the network training process to learn a continuous function that describes the stress-life relationship satisfying both experimental data and physical knowledge. We demonstrate the proposed framework with sensitivity analysis and a comparison to the fully data-driven neural networks and the conventional statistical methods using the fatigue test data of three different materials. The results show that the proposed framework has a robust performance to effectively reflect the underlying physical knowledge and prevent overfitting issues. The findings provide a better understanding of neural networks’ application to fatigue life prediction and suggest that one should be cautious when using a fully data-driven approach in scientific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
long发布了新的文献求助10
1秒前
1秒前
1秒前
hhh发布了新的文献求助10
1秒前
隐形曼青应助Manyiu采纳,获得10
1秒前
指尖的芭蕾完成签到,获得积分10
2秒前
whatever应助尉迟冰蓝采纳,获得20
2秒前
3秒前
3秒前
4秒前
小可发布了新的文献求助20
5秒前
科研顺利发布了新的文献求助10
6秒前
fuiee完成签到,获得积分10
6秒前
负数完成签到,获得积分10
7秒前
义气的大朋友完成签到,获得积分10
7秒前
8秒前
踏实滑板发布了新的文献求助10
8秒前
9秒前
lxhkk完成签到,获得积分10
9秒前
发发发完成签到,获得积分10
9秒前
9秒前
胖虎驳回了赘婿应助
10秒前
10秒前
外向的斓完成签到,获得积分20
11秒前
houlingwei发布了新的文献求助10
12秒前
呆萌沛柔完成签到,获得积分10
12秒前
子车茗应助123采纳,获得10
13秒前
发发发发布了新的文献求助10
13秒前
一首最美丽的感情完成签到,获得积分10
14秒前
夜白应助sdkabdrxt采纳,获得20
14秒前
明理的惜蕊应助wulijie采纳,获得10
14秒前
WW完成签到,获得积分10
15秒前
ZHANGCHAOHANG发布了新的文献求助30
16秒前
weiwei应助Jane采纳,获得10
16秒前
芒果柠檬完成签到,获得积分20
17秒前
雍雍发布了新的文献求助10
17秒前
花君辞完成签到,获得积分10
17秒前
18秒前
我是老大应助越宝采纳,获得10
19秒前
19秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217051
求助须知:如何正确求助?哪些是违规求助? 2866215
关于积分的说明 8150967
捐赠科研通 2532896
什么是DOI,文献DOI怎么找? 1365956
科研通“疑难数据库(出版商)”最低求助积分说明 644636
邀请新用户注册赠送积分活动 617579