Sustaining struvite production from wastewater through machine learning based modelling and process validation

鸟粪石 废水 线性回归 计算机科学 回归 环境科学 机器学习 数学 工艺工程 环境工程 统计 工程类
作者
Nageshwari Krishnamoorthy,Vimaladhasan Senthamizhan,P. Balasubramanian
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:53: 102608-102608 被引量:11
标识
DOI:10.1016/j.seta.2022.102608
摘要

The looming scarcity of phosphorus rock and intensification of its extraction for fertilizing applications has triggered the researchers to work upon a potential alternative such as struvite precipitation from wastewaters. Struvite production at commercial scale requires the support of novel prediction tools to smoothen the planning and execution processes. The present work aims at predicting the struvite recovery using several machine learning algorithms such as linear regression model, polynomial regression model, random forest regression model and eXtreme Gradient Boosting (XGB) regression model. Datasets for ten significant process parameters such as pH, temperature, concentrations of phosphate, ammonium and magnesium, stirring speed, reaction and retention time, drying temperature and time of various wastewater sources were collected for predicting the recovery. To minimize the loss function, extensive grid search hyperparameter tuning was performed to optimize the model. XGB was found to be the most robust method for prediction of nutrient recovery as struvite. The highest regression coefficient (R2) of 0.9683 and 0.9483 were achieved for phosphate and ammonium recoveries, respectively. The key influencing factors on target output were studied using SHapley Additive exPlanations (SHAP) plots that depicts the interactive effect of each of the input parameters on phosphate and ammonium recovery. Experimental validation was carried out to further support the model predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初见发布了新的文献求助10
3秒前
淡定访琴发布了新的文献求助10
5秒前
6秒前
6秒前
老默完成签到,获得积分10
9秒前
12秒前
lily发布了新的文献求助10
13秒前
思源应助wuzhihu采纳,获得10
14秒前
Rondab应助务实的寻凝采纳,获得10
18秒前
18秒前
20秒前
21秒前
小雪糕完成签到,获得积分10
26秒前
26秒前
liu完成签到,获得积分10
29秒前
柯一一应助友好的井采纳,获得10
30秒前
zzzeeee完成签到,获得积分20
31秒前
余奕关注了科研通微信公众号
33秒前
33秒前
zzzeeee发布了新的文献求助10
33秒前
小蘑菇应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
yznfly应助科研通管家采纳,获得30
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
ZJHYNL应助科研通管家采纳,获得10
35秒前
深情安青应助科研通管家采纳,获得10
35秒前
35秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
李健应助科研通管家采纳,获得20
35秒前
35秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
37秒前
Tianji完成签到 ,获得积分20
40秒前
41秒前
深情安青应助宁远采纳,获得10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579