Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 算法 教育学 医学 放射科 法学
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cola完成签到,获得积分10
1秒前
研友_LpvQlZ发布了新的文献求助10
2秒前
老实乌冬面完成签到 ,获得积分10
3秒前
Yi完成签到,获得积分10
3秒前
郭郭要努力ya完成签到 ,获得积分10
5秒前
5秒前
奋斗的若云完成签到,获得积分10
6秒前
7秒前
mingzhi完成签到,获得积分10
8秒前
8秒前
CodeCraft应助开朗的寄灵采纳,获得10
10秒前
jijijibibibi完成签到,获得积分10
11秒前
Mr.PY发布了新的文献求助20
12秒前
12秒前
13秒前
bobecust发布了新的文献求助10
14秒前
南楼小阁主完成签到,获得积分10
14秒前
15秒前
TT工作好认真完成签到 ,获得积分10
16秒前
听山雁完成签到 ,获得积分10
16秒前
人文发布了新的文献求助10
17秒前
zhou默完成签到,获得积分10
17秒前
颜靖仇发布了新的文献求助10
17秒前
lixiang发布了新的文献求助10
18秒前
忧虑的代容完成签到,获得积分10
18秒前
19秒前
慈ci发布了新的文献求助10
19秒前
无花果应助万默采纳,获得10
20秒前
slm完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
ding应助湖以采纳,获得10
21秒前
陈哇塞完成签到,获得积分20
22秒前
传奇3应助liuy03采纳,获得10
23秒前
lixiang完成签到,获得积分10
23秒前
gg发布了新的文献求助10
25秒前
25秒前
大模型应助慈ci采纳,获得10
28秒前
30秒前
30秒前
666完成签到,获得积分20
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499