Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YCG完成签到 ,获得积分10
1秒前
竹筏过海应助淡然天问采纳,获得30
1秒前
浮游应助淡然天问采纳,获得10
1秒前
领导范儿应助柔弱的冬天采纳,获得30
2秒前
落后翠柏发布了新的文献求助10
3秒前
不安的成协完成签到,获得积分10
4秒前
4秒前
5秒前
长情听南发布了新的文献求助10
6秒前
锦慜发布了新的文献求助10
6秒前
顾矜应助蓦然采纳,获得10
7秒前
可爱的函函应助panda采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
李昕123发布了新的文献求助10
8秒前
8秒前
吧唧完成签到,获得积分10
9秒前
123456完成签到,获得积分10
10秒前
大模型应助wjy321采纳,获得10
10秒前
云漫山发布了新的文献求助10
10秒前
Ruby应助jsss采纳,获得10
11秒前
11秒前
12秒前
wise111发布了新的文献求助30
12秒前
尊敬的小凡完成签到,获得积分10
12秒前
xbx1991发布了新的文献求助30
12秒前
充电宝应助阿良采纳,获得10
14秒前
自信大白菜真实的钥匙完成签到,获得积分10
14秒前
wyh应助活泼溪流采纳,获得30
14秒前
李昕123完成签到,获得积分10
15秒前
15秒前
刺五加完成签到 ,获得积分10
16秒前
852应助Eom采纳,获得10
16秒前
17秒前
17秒前
caoyuya123完成签到 ,获得积分10
17秒前
18秒前
19秒前
风清扬发布了新的文献求助10
19秒前
张宁宁发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704