Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的襄发布了新的文献求助30
刚刚
周二完成签到 ,获得积分10
1秒前
1秒前
杳鸢应助丁茸茸采纳,获得200
1秒前
小罗完成签到 ,获得积分10
2秒前
3秒前
钰环完成签到 ,获得积分10
4秒前
科研发布了新的文献求助10
5秒前
qinggyu完成签到,获得积分10
8秒前
yulee发布了新的文献求助10
9秒前
晚风完成签到,获得积分10
10秒前
13秒前
yar举报gaze求助涉嫌违规
13秒前
xiyiyun关注了科研通微信公众号
14秒前
无颜祖完成签到 ,获得积分10
14秒前
16秒前
科研通AI2S应助hugdoggy采纳,获得10
16秒前
优秀不愁发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助苞大米采纳,获得10
18秒前
热心市民小红花应助miyavi采纳,获得10
18秒前
miyavi应助zq采纳,获得10
19秒前
王九八发布了新的文献求助10
19秒前
优雅狗完成签到,获得积分10
19秒前
怕黑的香岚完成签到 ,获得积分10
20秒前
超级无敌大帅逼完成签到,获得积分20
20秒前
AXIANGGE发布了新的文献求助10
21秒前
Diamond发布了新的文献求助10
21秒前
22秒前
24秒前
在水一方应助优秀不愁采纳,获得10
24秒前
25秒前
25秒前
乔诶次完成签到 ,获得积分10
26秒前
li发布了新的文献求助10
26秒前
斯芬克斯完成签到 ,获得积分10
26秒前
性感大喽s属性大爆发完成签到,获得积分10
27秒前
彩虹海完成签到,获得积分10
27秒前
叶耶耶完成签到 ,获得积分10
27秒前
桐桐应助能干的杨柿子采纳,获得10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264175
求助须知:如何正确求助?哪些是违规求助? 2904362
关于积分的说明 8330033
捐赠科研通 2574592
什么是DOI,文献DOI怎么找? 1399202
科研通“疑难数据库(出版商)”最低求助积分说明 654449
邀请新用户注册赠送积分活动 633117