Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叩叩发布了新的文献求助10
刚刚
黄74185296完成签到,获得积分10
刚刚
toki完成签到,获得积分10
2秒前
bird0912完成签到,获得积分10
3秒前
济民财完成签到,获得积分10
4秒前
zhangj696完成签到,获得积分10
4秒前
NeoWu完成签到,获得积分10
7秒前
是我不得开心妍完成签到 ,获得积分10
7秒前
归于晏完成签到,获得积分10
8秒前
蒙蒙完成签到,获得积分20
9秒前
YiWei完成签到 ,获得积分10
9秒前
11秒前
李白完成签到,获得积分10
11秒前
温柔的蛋挞完成签到,获得积分10
12秒前
pp完成签到,获得积分10
12秒前
思源应助叩叩采纳,获得10
13秒前
posh完成签到 ,获得积分10
14秒前
ajing完成签到,获得积分10
14秒前
FooLeup立仔完成签到,获得积分10
14秒前
马东完成签到 ,获得积分10
16秒前
17秒前
HUangg完成签到,获得积分10
18秒前
YY完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
老猫头鹰完成签到,获得积分10
20秒前
20秒前
魁梧的海秋完成签到,获得积分10
21秒前
不想看文献完成签到,获得积分10
21秒前
21秒前
wwqc完成签到,获得积分0
21秒前
时尚雨兰完成签到,获得积分10
22秒前
蒙蒙发布了新的文献求助10
22秒前
慕青应助sunwei采纳,获得10
22秒前
CharlieYue完成签到,获得积分10
23秒前
张琨完成签到 ,获得积分10
25秒前
潘涵完成签到,获得积分10
26秒前
yuan完成签到,获得积分10
27秒前
无名完成签到,获得积分10
27秒前
28秒前
i羽翼深蓝i完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917