亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkg发布了新的文献求助10
5秒前
38秒前
江梁发布了新的文献求助10
43秒前
大个应助贝加尔湖畔采纳,获得10
43秒前
51秒前
55秒前
SoreThrow完成签到,获得积分10
1分钟前
霡霂发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
熬夜波比应助科研通管家采纳,获得10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
1分钟前
修辛完成签到 ,获得积分10
1分钟前
一见喜发布了新的文献求助10
2分钟前
好好好完成签到,获得积分10
2分钟前
2分钟前
Jiangtao完成签到,获得积分10
2分钟前
huyu完成签到 ,获得积分10
2分钟前
2分钟前
SoreThrow发布了新的文献求助10
3分钟前
3分钟前
Leo发布了新的文献求助10
3分钟前
活泼的路人完成签到,获得积分10
3分钟前
3分钟前
Leo完成签到,获得积分10
3分钟前
啊z应助科研通管家采纳,获得10
3分钟前
3分钟前
yhw发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Lu发布了新的文献求助10
4分钟前
JamesPei应助puzhongjiMiQ采纳,获得10
5分钟前
NN应助puzhongjiMiQ采纳,获得10
5分钟前
搜集达人应助puzhongjiMiQ采纳,获得10
5分钟前
ccm应助puzhongjiMiQ采纳,获得10
5分钟前
彭于晏应助puzhongjiMiQ采纳,获得10
5分钟前
完美世界应助puzhongjiMiQ采纳,获得10
5分钟前
pluto应助puzhongjiMiQ采纳,获得10
5分钟前
ccm应助puzhongjiMiQ采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009593
关于积分的说明 15175775
捐赠科研通 4841036
什么是DOI,文献DOI怎么找? 2594852
邀请新用户注册赠送积分活动 1547875
关于科研通互助平台的介绍 1505880