Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研白菜完成签到,获得积分10
2秒前
大聪明应助咸鱼采纳,获得10
3秒前
5秒前
黄经亮发布了新的文献求助10
5秒前
7秒前
酷波er应助哈哈采纳,获得10
7秒前
勤劳紫青完成签到 ,获得积分10
7秒前
蔡从安发布了新的文献求助10
9秒前
bean完成签到 ,获得积分10
9秒前
02022发布了新的文献求助10
10秒前
金鑫水淼完成签到,获得积分10
10秒前
zhuling完成签到,获得积分10
13秒前
13秒前
14秒前
bkagyin应助嘚嘚采纳,获得10
18秒前
不安忆寒发布了新的文献求助10
18秒前
18秒前
Jasper应助zhuling采纳,获得10
19秒前
行走De太阳花完成签到,获得积分10
20秒前
ch完成签到,获得积分10
21秒前
kiki完成签到,获得积分10
22秒前
22秒前
Hello应助傲娇的梦寒采纳,获得10
23秒前
23秒前
jscr完成签到,获得积分10
23秒前
科目三应助胡胡嘉嘉磊磊采纳,获得10
24秒前
王威关注了科研通微信公众号
24秒前
25秒前
haimianbaobao完成签到 ,获得积分10
26秒前
daodao发布了新的文献求助10
27秒前
王0你萌完成签到 ,获得积分10
28秒前
30秒前
喜宝完成签到 ,获得积分10
30秒前
乐观抽屉完成签到,获得积分10
30秒前
慕青应助刘浩然采纳,获得10
31秒前
科研通AI6应助xu采纳,获得10
32秒前
利华尔完成签到,获得积分10
32秒前
宣尔槐发布了新的文献求助10
33秒前
啊哈哈黑猫兵长完成签到,获得积分10
33秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380088
求助须知:如何正确求助?哪些是违规求助? 4504158
关于积分的说明 14017420
捐赠科研通 4413027
什么是DOI,文献DOI怎么找? 2424054
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394628