Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容友灵完成签到,获得积分10
刚刚
红萌馆管家完成签到,获得积分10
1秒前
科研通AI6.1应助陈龙采纳,获得10
1秒前
2秒前
太阳发布了新的文献求助10
3秒前
彭于晏应助Yidie采纳,获得10
4秒前
4秒前
曾舒欣发布了新的文献求助30
4秒前
5秒前
有个公子她姓李完成签到,获得积分10
5秒前
优秀关注了科研通微信公众号
5秒前
蝈蝈完成签到,获得积分10
5秒前
sqz_df完成签到,获得积分10
6秒前
6秒前
fan完成签到 ,获得积分10
6秒前
微笑襄完成签到 ,获得积分10
6秒前
7秒前
怕孤独的花瓣完成签到,获得积分10
7秒前
关关过应助Sea_U采纳,获得50
7秒前
芳芳子发布了新的文献求助10
8秒前
cheng发布了新的文献求助10
8秒前
数学情缘发布了新的文献求助10
9秒前
七塔蹦完成签到,获得积分10
10秒前
zmr完成签到,获得积分10
10秒前
明亮灭绝发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
LIUDEHUA发布了新的文献求助10
11秒前
慕青应助sqz_df采纳,获得10
12秒前
爱撒娇的大开完成签到 ,获得积分10
12秒前
耍酷橘子完成签到 ,获得积分10
12秒前
陈龙发布了新的文献求助10
13秒前
13秒前
lemon完成签到,获得积分0
14秒前
高高完成签到,获得积分10
14秒前
Owen应助芳芳子采纳,获得10
14秒前
彭于晏应助kongmeng采纳,获得10
14秒前
11完成签到,获得积分10
15秒前
树林发布了新的文献求助10
15秒前
完美世界应助WillGUO采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709