Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌人归完成签到 ,获得积分10
1秒前
专注雨珍完成签到,获得积分10
1秒前
wy.he应助结实大雁采纳,获得10
2秒前
2秒前
科研通AI6.1应助鲜艳的遥采纳,获得10
2秒前
彭新铭完成签到,获得积分10
2秒前
Charles_Rowan发布了新的文献求助10
2秒前
科目三应助阿皓要发nature采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
草莓熊发布了新的文献求助10
3秒前
无花果应助wmzskye采纳,获得10
3秒前
SciGPT应助MOMO采纳,获得10
3秒前
Xin完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Hello应助zzt采纳,获得10
5秒前
Herisland发布了新的文献求助10
5秒前
su发布了新的文献求助10
5秒前
科研通AI6.1应助richael采纳,获得10
5秒前
5秒前
6秒前
xzy998应助感动城采纳,获得10
6秒前
esbd发布了新的文献求助10
8秒前
8秒前
Ceaser完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
简单喀秋莎完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
volcanoes完成签到,获得积分10
9秒前
594发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助10
9秒前
Ruby发布了新的文献求助30
10秒前
10秒前
夏天完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882