清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Privacy Preserving Technologies in US Education.

衡平法 计算机科学 跟踪(教育) 介绍(产科) 差别隐私 互联网隐私 业务 公共关系 政治学 心理学 医学 教育学 算法 法学 放射科
作者
Amy O’Hara,Stephanie Straus
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (3)
标识
DOI:10.23889/ijpds.v7i3.2084
摘要

In the US education sector, data are captured on learners at all stages of the life course with rich, sensitive information on learner demographics, enrollment, achievement, borrowing, and outcomes. Most data are controlled by institutions, who increasingly want to monitor progress from cradle to career, tracking students from early childhood through primary and secondary schools (K-12), on to degrees granted in postsecondary institutions, including continuing and technical education that grant credentials. Collecting, storing, and using such data raises privacy concerns. This presentation describes privacy preserving technologies (PPTs) that have been discussed, tested, implemented – and abandoned – in the education domain. These include both input and output privacy protection methods ranging from absolute lockdowns of learner data to cryptographically-protected data access and analysis systems. We describe most familiar and tested PPTs including secure hashing, secure multiparty computation, trusted execution environments, and differential privacy, highlighting actual applications in schools, departments of education, and educational technology nonprofits and companies. We summarize the factors that limit PPT use and success, including legal, institutional, technical, and cultural barriers and offer recommendations to overcome these barriers. For example, we find gaps in understanding what PPTs are and what problems they solve; a lack of engagement with data controllers, subjects, and regulators; and a lack of human capital to implement and use PPTs. There are also significant research and development needs to continue making PPTs less costly in financial, compute, and complexity terms. Our recommendations suggest topics for continued research into methods that produce disaggregate statistics to analyze equity while protecting privacy, have clear and fair privacy loss budgets, and produce open-source technology, ideally pairing scientists with education experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
48秒前
yxuan发布了新的文献求助10
53秒前
小蘑菇应助yxuan采纳,获得10
59秒前
mianmian0118完成签到 ,获得积分10
1分钟前
yipmyonphu完成签到,获得积分10
2分钟前
yindi1991完成签到 ,获得积分10
3分钟前
开心夏真完成签到,获得积分10
3分钟前
3分钟前
上官若男应助CC采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
两个榴莲完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
CC发布了新的文献求助10
7分钟前
John完成签到 ,获得积分10
7分钟前
CC完成签到,获得积分10
7分钟前
vbnn完成签到 ,获得积分10
7分钟前
8分钟前
Alisha发布了新的文献求助10
8分钟前
不瞌睡完成签到,获得积分0
8分钟前
9分钟前
NiLou发布了新的文献求助10
9分钟前
平常以云完成签到 ,获得积分10
9分钟前
9分钟前
Tree_QD完成签到 ,获得积分10
9分钟前
科研通AI5应助NiLou采纳,获得10
9分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
9分钟前
Tales完成签到 ,获得积分10
10分钟前
激动的似狮完成签到,获得积分10
10分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
11分钟前
白华苍松发布了新的文献求助20
11分钟前
研友_VZG7GZ应助科研通管家采纳,获得30
11分钟前
大饼完成签到 ,获得积分10
11分钟前
锦诗完成签到,获得积分10
12分钟前
Alisha完成签到,获得积分10
12分钟前
心想柿橙发布了新的文献求助10
13分钟前
爆米花应助guimizhizhu11采纳,获得10
13分钟前
小梦完成签到,获得积分10
13分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111142
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740