Extending machine learning beyond interatomic potentials for predicting molecular properties

概括性 可转让性 量子化学 偶极子 计算机科学 原子间势 人工智能 机器学习 人工神经网络 力场(虚构) 统计物理学 分子动力学 化学 物理 计算化学 分子 量子力学 罗伊特 心理治疗师 心理学
作者
Nikita Fedik,R.I. Zubatyuk,Maksim Kulichenko,Nicholas Lubbers,Justin S. Smith,Benjamin Nebgen,Richard A. Messerly,Ying Wai Li,Alexander I. Boldyrev,Kipton Barros,Olexandr Isayev,Sergei Tretiak
出处
期刊:Nature Reviews Chemistry [Springer Nature]
卷期号:6 (9): 653-672 被引量:62
标识
DOI:10.1038/s41570-022-00416-3
摘要

Machine learning (ML) is becoming a method of choice for modelling complex chemical processes and materials. ML provides a surrogate model trained on a reference dataset that can be used to establish a relationship between a molecular structure and its chemical properties. This Review highlights developments in the use of ML to evaluate chemical properties such as partial atomic charges, dipole moments, spin and electron densities, and chemical bonding, as well as to obtain a reduced quantum-mechanical description. We overview several modern neural network architectures, their predictive capabilities, generality and transferability, and illustrate their applicability to various chemical properties. We emphasize that learned molecular representations resemble quantum-mechanical analogues, demonstrating the ability of the models to capture the underlying physics. We also discuss how ML models can describe non-local quantum effects. Finally, we conclude by compiling a list of available ML toolboxes, summarizing the unresolved challenges and presenting an outlook for future development. The observed trends demonstrate that this field is evolving towards physics-based models augmented by ML, which is accompanied by the development of new methods and the rapid growth of user-friendly ML frameworks for chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马完成签到,获得积分10
1秒前
1秒前
大气早晨发布了新的文献求助10
2秒前
3秒前
4秒前
四月天完成签到,获得积分20
5秒前
CodeCraft应助野草采纳,获得10
5秒前
大陈发布了新的文献求助10
6秒前
6秒前
陈甸甸发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
10秒前
11秒前
znnnnnnnnnn完成签到 ,获得积分10
12秒前
陈甸甸完成签到,获得积分10
13秒前
田様应助机智的瑾瑜采纳,获得10
13秒前
春夏秋冬发布了新的文献求助10
14秒前
微风徐徐发布了新的文献求助20
15秒前
15秒前
15秒前
17秒前
我是老大应助艺_采纳,获得10
17秒前
17秒前
打打应助甜蜜代曼采纳,获得10
18秒前
18秒前
香蕉觅云应助春夏秋冬采纳,获得10
19秒前
粥粥舟完成签到,获得积分10
19秒前
LSS发布了新的文献求助10
19秒前
fengw420完成签到,获得积分10
20秒前
20秒前
kyf完成签到,获得积分10
20秒前
21秒前
21秒前
Akim应助theThreeMagi采纳,获得10
21秒前
21秒前
NexusExplorer应助学术laji采纳,获得10
21秒前
bkagyin应助myl采纳,获得10
22秒前
野草发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706