亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology

医学 无线电技术 机器学习 磁共振成像 深度学习 人工智能 放射科 恶性肿瘤 计算机科学 病理
作者
Benjamin Fritz,Paul H. Yi,Richard Kijowski,Jan Fritz
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (1): 3-13 被引量:50
标识
DOI:10.1097/rli.0000000000000907
摘要

Abstract Radiomics and machine learning–based methods offer exciting opportunities for improving diagnostic performance and efficiency in musculoskeletal radiology for various tasks, including acute injuries, chronic conditions, spinal abnormalities, and neoplasms. While early radiomics-based methods were often limited to a smaller number of higher-order image feature extractions, applying machine learning-based analytic models, multifactorial correlations, and classifiers now permits big data processing and testing thousands of features to identify relevant markers. A growing number of novel deep learning–based methods describe magnetic resonance imaging– and computed tomography–based algorithms for diagnosing anterior cruciate ligament tears, meniscus tears, articular cartilage defects, rotator cuff tears, fractures, metastatic skeletal disease, and soft tissue tumors. Initial radiomics and deep learning techniques have focused on binary detection tasks, such as determining the presence or absence of a single abnormality and differentiation of benign versus malignant. Newer-generation algorithms aim to include practically relevant multiclass characterization of detected abnormalities, such as typing and malignancy grading of neoplasms. So-called delta-radiomics assess tumor features before and after treatment, with temporal changes of radiomics features serving as surrogate markers for tumor responses to treatment. New approaches also predict treatment success rates, surgical resection completeness, and recurrence risk. Practice-relevant goals for the next generation of algorithms include diagnostic whole-organ and advanced classification capabilities. Important research objectives to fill current knowledge gaps include well-designed research studies to understand how diagnostic performances and suggested efficiency gains of isolated research settings translate into routine daily clinical practice. This article summarizes current radiomics- and machine learning–based magnetic resonance imaging and computed tomography approaches for musculoskeletal disease detection and offers a perspective on future goals and objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力鸿发布了新的文献求助10
27秒前
思源应助科研通管家采纳,获得10
37秒前
可久斯基完成签到 ,获得积分10
48秒前
爆米花应助wenwen采纳,获得10
1分钟前
1分钟前
wenwen发布了新的文献求助10
1分钟前
1分钟前
wenwen完成签到,获得积分10
1分钟前
xiaolang2004完成签到,获得积分10
1分钟前
2分钟前
等待香寒完成签到 ,获得积分10
2分钟前
蛋白积聚完成签到,获得积分10
2分钟前
zombleq完成签到 ,获得积分10
3分钟前
迷你的靖雁完成签到,获得积分10
3分钟前
Orange应助威武谷南采纳,获得10
3分钟前
taotao发布了新的文献求助10
3分钟前
4分钟前
4分钟前
威武谷南发布了新的文献求助10
4分钟前
4分钟前
SoftwarePrince完成签到,获得积分10
4分钟前
郗妫完成签到,获得积分10
4分钟前
jyy完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
spark810完成签到,获得积分0
5分钟前
factor发布了新的文献求助10
5分钟前
彭于晏应助欢呼的寻双采纳,获得10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
完美世界应助一杯美式采纳,获得10
5分钟前
6分钟前
一杯美式发布了新的文献求助10
6分钟前
6分钟前
7分钟前
7分钟前
英俊的铭应助iris采纳,获得10
7分钟前
领导范儿应助大爷醒醒啊采纳,获得10
7分钟前
7分钟前
iris发布了新的文献求助10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784128
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989