重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Remaining useful life prediction of mechanical system based on performance evaluation and geometric fractional Lévy stable motion with adaptive nonlinear drift

非线性系统 赫斯特指数 航程(航空) 概率密度函数 断层(地质) 单调函数 理论(学习稳定性) 控制理论(社会学) 数学 高斯分布 应用数学 计算机科学 算法 工程类 统计 人工智能 数学分析 物理 机器学习 控制(管理) 地震学 航空航天工程 地质学 量子力学
作者
Qiang Li,Zhenhui Ma,Hongkun Li,Xuejun Liu,Xichun Guan,Peihua Tian
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:184: 109679-109679 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109679
摘要

Remaining useful life (RUL) prediction is of great significance for prognostic and health management (PHM). To accurately predict the RUL of mechanical system under complex conditions, an RUL prediction framework is proposed based on performance evaluation and geometric fractional Lévy stable motion (GFLSM) with adaptive nonlinear drift. The early fault identification of degradation process is realized by setting a threshold for the constructed monotonic health indicator (HI). The dynamic updating method of failure threshold depending on confidence interval is proposed to determine the time of zero RUL. The heavy-tailed distribution degradation model based on GFLSM is constructed to overcome the limitation of Gaussian distribution. The multiple degradation stages are mapped to a relatively unified mode through GFLSM. The long-range dependence and self-similarity of degradation process are described through the relationship between Hurst exponent and stability exponent. The adaptive updating method of nonlinear drift coefficient is put forward to satisfy different degradation trajectories, and other parameters of GFLSM are estimated by the characteristic function method. The predicted RUL and corresponding probability density function (PDF) are obtained by Monte Carlo. The proposed RUL prediction framework is verified by the degradation simulation signal and two different practical industrial experiments. The experimental results demonstrate that the proposed framework is more effective and superior to other state-of-the-art techniques in RUL prediction of mechanical system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光亮烤鸡发布了新的文献求助10
刚刚
tang完成签到,获得积分10
1秒前
1秒前
1秒前
王王王完成签到,获得积分10
1秒前
Neltharion完成签到,获得积分0
1秒前
Lekai发布了新的文献求助10
1秒前
深情安青应助111采纳,获得10
1秒前
zero完成签到,获得积分10
2秒前
2秒前
2秒前
韭黄发布了新的文献求助10
2秒前
2秒前
just发布了新的文献求助10
3秒前
Owen应助橘子采纳,获得10
3秒前
悲凉的惮发布了新的文献求助10
3秒前
所所应助skycrygg521采纳,获得10
3秒前
拼搏雨兰发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
HQQ完成签到,获得积分20
4秒前
4秒前
qingmoheng应助黑粉头头采纳,获得10
5秒前
5秒前
5秒前
深情安青应助王曼曼采纳,获得10
5秒前
5秒前
5秒前
李爱国应助不洒采纳,获得10
6秒前
asiera发布了新的文献求助10
6秒前
zzz发布了新的文献求助20
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
王杰秀完成签到,获得积分20
6秒前
Emanuel发布了新的文献求助10
6秒前
打打应助自觉寒梦采纳,获得10
7秒前
7秒前
liu发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612