[Detection of microaneurysms in fundus images based on improved YOLOv4 with SENet embedded].

计算机科学 背景(考古学) 骨干网 人工智能 联营 模式识别(心理学) 聚类分析 眼底(子宫) 深度学习 棱锥(几何) 目标检测 数学 医学 计算机网络 古生物学 几何学 眼科 生物
作者
Weiwei Gao,Mingtao Shan,Nan Song,Bo Fan,Yu Fang
出处
期刊:PubMed 卷期号:39 (4): 713-720 被引量:1
标识
DOI:10.7507/1001-5515.202203022
摘要

Microaneurysm is the initial symptom of diabetic retinopathy. Eliminating this lesion can effectively prevent diabetic retinopathy in the early stage. However, due to the complex retinal structure and the different brightness and contrast of fundus image because of different factors such as patients, environment and acquisition equipment, the existing detection algorithms are difficult to achieve the accurate detection and location of the lesion. Therefore, an improved detection algorithm of you only look once (YOLO) v4 with Squeeze-and-Excitation networks (SENet) embedded was proposed. Firstly, an improved and fast fuzzy c-means clustering algorithm was used to optimize the anchor parameters of the target samples to improve the matching degree between the anchors and the feature graphs; Then, the SENet attention module was embedded in the backbone network to enhance the key information of the image and suppress the background information of the image, so as to improve the confidence of microaneurysms; In addition, an spatial pyramid pooling was added to the network neck to enhance the acceptance domain of the output characteristics of the backbone network, so as to help separate important context information; Finally, the model was verified on the Kaggle diabetic retinopathy dataset and compared with other methods. The experimental results showed that compared with other YOLOv4 network models with various structures, the improved YOLOv4 network model could significantly improve the automatic detection results such as F-score which increased by 12.68%; Compared with other network models and methods, the automatic detection accuracy of the improved YOLOv4 network model with SENet embedded was obviously better, and accurate positioning could be realized. Therefore, the proposed YOLOv4 algorithm with SENet embedded has better performance, and can accurately and effectively detect and locate microaneurysms in fundus images.微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实现该病灶的精确检测和定位,为此本文提出嵌入SENet(squeeze-and-excitation networks)的改进YOLO(you only look once)v4自动检测算法。该算法在YOLOv4网络基础上,首先通过使用一种改进的快速模糊C均值聚类算法对目标样本进行先验框参数优化,以提高先验框与特征图的匹配度;然后,在主干网络嵌入SENet模块,通过强化关键信息,抑制背景信息,提高微动脉瘤的置信度;此外,还在网络颈部增加空间金字塔池化结构以增强主干网络输出特征的接受域,从而有助于分离出重要的上下文信息;最后,在Kaggle数据集上进行模型验证,并与其他方法进行对比。实验结果表明,与其他各种结构的YOLOv4网络模型相比,所提出的嵌入SENet的改进YOLOv4网络模型能显著提高检测结果(与原始YOLOv4相比F-score提升了12.68%);与其他网络模型以及方法相比,所提出的嵌入SENet的改进YOLOv4网络模型的自动检测精度明显更优,且可实现精准定位。故本文所提出的嵌入SENet的改进YOLOv4算法性能较优,能准确、有效地检测并定位出眼底图像中的微动脉瘤。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijingwen发布了新的文献求助10
刚刚
qq完成签到 ,获得积分10
1秒前
YDM完成签到,获得积分10
1秒前
LRX完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
要减肥的卷心菜完成签到,获得积分10
2秒前
迪琛发布了新的文献求助10
3秒前
3秒前
TT完成签到,获得积分20
4秒前
阮逸君完成签到,获得积分20
5秒前
泽泽完成签到 ,获得积分10
5秒前
张茂润完成签到,获得积分10
6秒前
xiaochouyu完成签到,获得积分10
6秒前
背后的白山完成签到,获得积分10
6秒前
薰硝壤应助hyjhhy采纳,获得30
6秒前
苯环完成签到 ,获得积分10
7秒前
7秒前
ny960发布了新的文献求助10
7秒前
我是老大应助Yurrrrt采纳,获得10
8秒前
大饼半斤发布了新的文献求助10
8秒前
道明嗣完成签到 ,获得积分10
8秒前
lili完成签到,获得积分20
8秒前
兵临城下完成签到,获得积分10
10秒前
a111完成签到,获得积分10
10秒前
lijingwen完成签到,获得积分10
10秒前
10秒前
健忘的荔枝完成签到,获得积分10
11秒前
一一完成签到,获得积分10
12秒前
Derik完成签到,获得积分10
13秒前
14秒前
14秒前
TJY发布了新的文献求助10
14秒前
15秒前
个性竺完成签到,获得积分10
15秒前
正在完成签到,获得积分10
16秒前
初步发布了新的文献求助10
16秒前
Owen应助yuyu采纳,获得10
17秒前
zzaz发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565