Ductile-brittle transition mechanisms in micro-grinding of silicon nitride

材料科学 研磨 脆性 氮化硅 复合材料 氮化物 冶金 图层(电子)
作者
Serge Shamray,Bahman Azarhoushang,Masih Paknejad,Andreas Buechler
出处
期刊:Ceramics International [Elsevier]
卷期号:48 (23): 34987-34998 被引量:38
标识
DOI:10.1016/j.ceramint.2022.08.088
摘要

Ductile grinding of brittle materials is essential for high precision applications and to maintain the strength and lifetime of the parts. The critical chip thickness of a brittle material defines a threshold for the lateral cracks' initiation in the workpiece due to the grains’ penetration. For ductile grinding, keeping the uncut chip thickness below the critical chip thickness of the brittle material is necessary. This study focuses on the ductile micro-grinding of Si3N4 as an advanced ceramic and brittle material. The critical chip thickness and the maximum uncut chip thickness were first calculated based on the material properties, the grinding parameters and the microtopography of the utilized grinding pin and then validated by both diamond grit scratches and micro-grinding experiments. Micro-grinding experiments on an inclined workpiece were conducted to investigate the material removal regimes of Si3N4. Grinding forces and surface integrity (surface roughness, surface topography and subsurface damages) induced by different micro grinding parameters and micro-grinding of an inclined workpiece are analyzed in detail. The estimated critical chip thickness and measured maximum uncut chip thickness could be used as an exact guide for achieving the ductile micro-grinding mode. The experiments revealed that the material removal mechanism mainly affects the micro-ground surface integrity. The ductile material removal mode induced no detectable subsurface damage and the surface quality deteriorated by the brittle removal mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑞仔完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
小二郎应助山山而川采纳,获得10
2秒前
sdl发布了新的文献求助10
2秒前
程西完成签到 ,获得积分10
2秒前
江鑫楷发布了新的文献求助10
3秒前
Amber完成签到,获得积分10
3秒前
祖之微笑发布了新的文献求助10
3秒前
mufcyang发布了新的文献求助10
3秒前
夕沫完成签到,获得积分10
3秒前
wq发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
6秒前
hbb完成签到 ,获得积分10
6秒前
wmq发布了新的文献求助30
6秒前
好( づ ωど)完成签到,获得积分10
7秒前
7秒前
CipherSage应助kxm采纳,获得10
7秒前
8秒前
shen完成签到,获得积分20
8秒前
9秒前
10秒前
科研yu完成签到,获得积分10
10秒前
ALDRC完成签到,获得积分10
11秒前
乐观寄风完成签到,获得积分10
11秒前
11秒前
11秒前
小二郎应助青弦采纳,获得10
11秒前
12秒前
PhD_Essence发布了新的文献求助10
13秒前
zhang完成签到,获得积分10
13秒前
13秒前
14秒前
Junlei完成签到,获得积分0
14秒前
量子星尘发布了新的文献求助10
14秒前
SciGPT应助霜妹子采纳,获得10
15秒前
tumankol发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660493
求助须知:如何正确求助?哪些是违规求助? 4834344
关于积分的说明 15090899
捐赠科研通 4819088
什么是DOI,文献DOI怎么找? 2579076
邀请新用户注册赠送积分活动 1533600
关于科研通互助平台的介绍 1492361