亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A two-stage approach based on Bayesian deep learning for predicting remaining useful life of rolling element bearings

方位(导航) 滚动轴承 阶段(地层学) 过程(计算) 人工智能 贝叶斯概率 工程类 计算机科学 机器学习 数据挖掘 古生物学 物理 量子力学 振动 生物 操作系统
作者
Kaijian Chen,Jingna Liu,Wenwu Guo,Xizhao Wang
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:109: 108745-108745 被引量:6
标识
DOI:10.1016/j.compeleceng.2023.108745
摘要

Remaining useful life (RUL) prediction of rolling element bearings is critical to maintaining rotating machinery and lowering industrial costs. There are many RUL prediction techniques, but most of them ignore two factors that may have a significant impact on prediction accuracy. One is the detection of the first predicting time (FPT) while the other is the predictive uncertainty. This paper proposes a two-stage approach to incorporating both factors into the prediction process based on Bayesian deep learning (BDL). In stage one, the state change of the bearing is identified and the FPT is determined according to a proposed detection technique. In stage two, RUL prediction is performed according to a new BDL model, and the results provide RUL point estimates and quantification of predictive uncertainty. The proposed two-stage approach has been validated on two publicly available bearing datasets, and the experimental results have demonstrated the effectiveness of the proposed approach in detecting FPT and its superiority over competitive BDL models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ngqgY8完成签到,获得积分10
4秒前
JamesPei应助温暖的乐蓉采纳,获得10
8秒前
8秒前
郭楠楠发布了新的文献求助10
14秒前
15秒前
比格大王应助badyoungboy采纳,获得10
16秒前
江经纬完成签到,获得积分20
23秒前
顾矜应助郭楠楠采纳,获得10
32秒前
47秒前
52秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
隐形不凡完成签到,获得积分10
1分钟前
温暖的乐蓉关注了科研通微信公众号
1分钟前
李桂芳完成签到,获得积分10
1分钟前
1分钟前
急诊守夜人完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
robin完成签到 ,获得积分10
2分钟前
万能图书馆应助HH采纳,获得10
2分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
英姑应助风华正茂采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得50
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Lulu发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
HH发布了新的文献求助10
3分钟前
Lulu完成签到,获得积分10
3分钟前
Yuki完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287