A two-stage approach based on Bayesian deep learning for predicting remaining useful life of rolling element bearings

方位(导航) 滚动轴承 阶段(地层学) 过程(计算) 人工智能 贝叶斯概率 工程类 计算机科学 机器学习 数据挖掘 量子力学 生物 操作系统 物理 古生物学 振动
作者
Kaijian Chen,Jingna Liu,Wenwu Guo,Xizhao Wang
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:109: 108745-108745 被引量:6
标识
DOI:10.1016/j.compeleceng.2023.108745
摘要

Remaining useful life (RUL) prediction of rolling element bearings is critical to maintaining rotating machinery and lowering industrial costs. There are many RUL prediction techniques, but most of them ignore two factors that may have a significant impact on prediction accuracy. One is the detection of the first predicting time (FPT) while the other is the predictive uncertainty. This paper proposes a two-stage approach to incorporating both factors into the prediction process based on Bayesian deep learning (BDL). In stage one, the state change of the bearing is identified and the FPT is determined according to a proposed detection technique. In stage two, RUL prediction is performed according to a new BDL model, and the results provide RUL point estimates and quantification of predictive uncertainty. The proposed two-stage approach has been validated on two publicly available bearing datasets, and the experimental results have demonstrated the effectiveness of the proposed approach in detecting FPT and its superiority over competitive BDL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助ShaLi123采纳,获得10
1秒前
苗条而大河完成签到,获得积分10
1秒前
1秒前
Diss发布了新的文献求助10
1秒前
街道办事部完成签到,获得积分10
1秒前
小七完成签到,获得积分10
2秒前
FashionBoy应助沿途有你采纳,获得10
2秒前
floating完成签到 ,获得积分10
2秒前
科研通AI5应助珊珊4532采纳,获得10
3秒前
Rose完成签到,获得积分10
3秒前
科研通AI5应助张利双采纳,获得10
4秒前
杨洋完成签到,获得积分10
5秒前
顾矜应助青鸾采纳,获得10
5秒前
杨文静发布了新的文献求助10
5秒前
Yu发布了新的文献求助10
6秒前
6秒前
6秒前
彭于晏完成签到,获得积分10
6秒前
7秒前
7秒前
过时的机器猫完成签到,获得积分10
7秒前
丘比特应助直率皓轩采纳,获得10
7秒前
卑微学术人完成签到 ,获得积分10
8秒前
可乐完成签到 ,获得积分20
8秒前
共享精神应助漾漾采纳,获得10
8秒前
8秒前
8秒前
栗子栗子完成签到,获得积分10
9秒前
Hello应助文献狗采纳,获得10
9秒前
10秒前
郑利兵关注了科研通微信公众号
10秒前
纯真电源发布了新的文献求助10
10秒前
11秒前
超级元以完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
fox199753206完成签到,获得积分10
12秒前
李萍萍发布了新的文献求助20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355