Towards an ecological informatics scholarship that is reflective, repeatable, transparent, and sharable!

生态区 地理 生态学 海鸟 城市化 生态位 城市生态学 栖息地 生物 捕食
作者
Falk Huettmann,George B. Arhonditsis
出处
期刊:Ecological Informatics [Elsevier]
卷期号:76: 102132-102132 被引量:14
标识
DOI:10.1016/j.ecoinf.2023.102132
摘要

In recent years, the automatic analysis of natural environment images acquired with unmanned aerial vehicles (UAV) has rapidly gained popularity. UAVs are specially important in mountainous forests where access is difficult and large areas need to be surveyed. In Zao mountains in northeastern Japan, regenerated fir saplings are competing with sub-alpine vegetation shrubs after a severe fir tree mortality caused by bark beetle infestation. A detailed survey of vegetation distribution is key to improve our understanding of species succession and the influence of climate change in that process. To that end, we evaluated the suitability of deep-learning-based automatic image classification of UAV images in order to map sub-alpine vegetation succession in large areas and the potential of fir regeneration.In order to assess the contribution of this technology in this research field, we first conducted an observer study to assess the difficulty for humans of the task of classifying vegetation from images. Afterwards, we compared the observers' accuracy to four state-of-the art deep learning networks for automatic image classification. The best observer accuracy of 55% demonstrates the limitations of species classification using only images. Furthermore, a detailed analysis of the sources of error showed that even though humans could differentiate between deciduous and evergreen species with an accuracy of 96%, identifying the correct species within each group proved much more challenging. In contrast, deep learning networks achieved accuracy values in the range of 70–80% for species classification, clearly demonstrating capabilities beyond human experts. Our experiments also indicated that the performance of these networks was significantly influenced by the similarity between the datasets used to fine-tune them and evaluate them. This fact highlights the importance of building publicly available images databases to further improve the results.Nevertheless, the results presented in this paper show that the analysis of UAV-acquired with deep learning networks can usher in a new type of large-scale study, spanning tenths or even hundreds of hectares with high spatial resolution (of a few cms per pixel), providing the ability to assess challenging vegetation dynamics problems that go beyond the ability of conventional fieldwork methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
大方蛟凤发布了新的文献求助10
4秒前
5秒前
11发布了新的文献求助10
8秒前
11秒前
11秒前
材料生发布了新的文献求助10
11秒前
15秒前
15秒前
云宝发布了新的文献求助10
18秒前
LIANG发布了新的文献求助10
18秒前
19秒前
香蕉以菱发布了新的文献求助10
20秒前
祖优秀完成签到 ,获得积分10
22秒前
luna完成签到,获得积分10
24秒前
yunshan完成签到,获得积分10
26秒前
26秒前
27秒前
超人完成签到 ,获得积分10
27秒前
Ava应助huanir99采纳,获得10
27秒前
shenghaowen完成签到,获得积分10
28秒前
30秒前
30秒前
天真寄真完成签到,获得积分10
31秒前
香蕉以菱完成签到,获得积分10
32秒前
月儿完成签到,获得积分10
33秒前
ASUKA完成签到,获得积分10
35秒前
赘婿应助keyanzhang采纳,获得10
35秒前
月儿发布了新的文献求助10
37秒前
41秒前
任性的小懒猪完成签到 ,获得积分10
43秒前
Bian完成签到,获得积分10
44秒前
45秒前
yuyu发布了新的文献求助10
46秒前
可耐的思远完成签到 ,获得积分10
48秒前
爆米花应助Eva采纳,获得10
49秒前
huanir99发布了新的文献求助10
50秒前
研友_VZG7GZ应助月儿采纳,获得10
50秒前
慕青应助Wang采纳,获得10
52秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380932
求助须知:如何正确求助?哪些是违规求助? 2995968
关于积分的说明 8766526
捐赠科研通 2681119
什么是DOI,文献DOI怎么找? 1468354
科研通“疑难数据库(出版商)”最低求助积分说明 678977
邀请新用户注册赠送积分活动 671007