TRPM7型
TRPM8型
下调和上调
神经科学
帕金森病
TRPV1型
疾病
细胞凋亡
生物
化学
医学
瞬时受体电位通道
病理
生物化学
基因
受体
摘要
Abstract The transient receptor potential channel (TRP) channels are expressed in neuronal tissues and involved in neurological diseases such as pain, epilepsy, neuronal apoptosis, and neurodegenerative diseases. Formerly, we have investigated how neuronal differentiation changes TRP channels expression profile and how Parkinson's disease model is related with this expression levels. We have found that transient receptor potential channel melastatin subtype 7 (TRPM7), transient receptor potential channel melastatin subtype 8 and transient receptor potential channel vanilloid subtype 1 (TRPV1) channels have pivotal effects on differentiation and 1‐Methyl‐4‐phenylpyridinium (MPP + )‐induced Parkinson's disease model in SH‐SY5Y cells. In this study, we have investigated that downregulation of the TRP channels to evaluate how differentiation status changes to Parkinson's disease pathological hallmarks. We have also performed to other analyses to elucidate these TRP channels' function in MPP + ‐induced neurotoxicity related apoptosis, cell viability, caspase 3 and 9 enzyme activities, intracellular reactive oxygen species production, mitochondrial depolarization levels, Ca 2+ signaling, Alpha‐synuclein and Dopamine levels, mono amino oxidase A and B enzymatic activities, both in differentiated and undifferentiated neuronal cells. Herein we have concluded that especially TRPM7 and TRPV1 channels have distinct role in Parkinson's disease pathology via their activity changings in pathological state, and downregulation of these channels or specific antagonists can be useful for the possible treatment strategy for Parkinson's disease and related markers.
科研通智能强力驱动
Strongly Powered by AbleSci AI