Deep learning-based classification of breast lesions using dynamic ultrasound video

医学 乳腺超声检查 人工智能 超声波 放射科 深度学习 乳房成像 乳腺癌 医学物理学 计算机科学 乳腺摄影术 癌症 内科学
作者
Guojia Zhao,Dezhuag Kong,Xiao Xu,Shunbo Hu,Ziyao Li,Jiawei Tian
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:165: 110885-110885 被引量:6
标识
DOI:10.1016/j.ejrad.2023.110885
摘要

We intended to develop a deep-learning-based classification model based on breast ultrasound dynamic video, then evaluate its diagnostic performance in comparison with the classic model based on ultrasound static image and that of different radiologists.We collected 1000 breast lesions from 888 patients from May 2020 to December 2021. Each lesion contained two static images and two dynamic videos. We divided these lesions randomly into training, validation, and test sets by the ratio of 7:2:1. Two deep learning (DL) models, namely DL-video and DL-image, were developed based on 3D Resnet-50 and 2D Resnet-50 using 2000 dynamic videos and 2000 static images, respectively. Lesions in the test set were evaluated to compare the diagnostic performance of two models and six radiologists with different seniority.The area under the curve of the DL-video model was significantly higher than those of the DL-image model (0.969 vs. 0.925, P = 0.0172) and six radiologists (0.969 vs. 0.779-0.912, P < 0.05). All radiologists performed better when evaluating the dynamic videos compared to the static images. Furthermore, radiologists performed better with increased seniority both in reading images and videos.The DL-video model can discern more detailed spatial and temporal information for accurate classification of breast lesions than the conventional DL-image model and radiologists, and its clinical application can further improve the diagnosis of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭团完成签到,获得积分10
1秒前
国色不染尘完成签到,获得积分10
1秒前
2秒前
gy完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
李1完成签到,获得积分10
4秒前
猪儿虫发布了新的文献求助10
4秒前
段启瑞完成签到,获得积分10
5秒前
彭于晏应助HHH采纳,获得10
6秒前
共享精神应助郑zhenglanyou采纳,获得10
6秒前
7秒前
7秒前
tuski发布了新的文献求助10
7秒前
Fun完成签到,获得积分10
8秒前
盼着毕业的研究牲完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助拾新采纳,获得10
10秒前
10秒前
kimon完成签到,获得积分10
11秒前
yenist完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
14秒前
刚刚发布了新的文献求助10
14秒前
云月林生完成签到,获得积分10
15秒前
16秒前
佐zzz完成签到 ,获得积分10
16秒前
跳跃凡桃发布了新的文献求助10
16秒前
今后应助Kianna采纳,获得30
17秒前
wanci应助刘家小姐姐采纳,获得10
17秒前
12发布了新的文献求助10
18秒前
HHH发布了新的文献求助10
18秒前
糕糕发布了新的文献求助10
22秒前
zjq完成签到,获得积分10
22秒前
23秒前
尊敬熊发布了新的文献求助10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032