MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery

可解释性 计算机科学 人工神经网络 机制(生物学) 图形 数据挖掘 人工智能 嵌入 一般化 计算 机器学习 理论计算机科学 算法 数学 哲学 数学分析 认识论
作者
Saian Chen,Aziguli Wulamu,Qiping Zou,Han Zheng,Wen Li,Xi Guo,Han Chen,Taohong Zhang,Ying Zhang
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:123: 108506-108506 被引量:12
标识
DOI:10.1016/j.jmgm.2023.108506
摘要

Molecular properties prediction and new material discovery are significant for the pharmaceutical industry, food, chemistry, and other fields. The popular methods are theoretical mechanism calculation and machine learning. There is a deviation between the theoretical mechanism calculation results and the experimental data. Machine learning method provides a promising solution. However, the process is lack of interpretability, and the reliability and the generalization depend on the training data. In this paper, a mechanism correction model combined with graph neural network (GNN) model which is based on the fusion of graph embedding and descriptors vector is proposed as backbone network to proceed molecule properties prediction and new material discovery. The molecular structure is input to graph neural network and the abstracted features are fused with numerical features together for training. The experiment data and computing data are designed as label constructor, and then the theoretical computation (mechanism driven model) is fused with the output of GNN (data-driven model) to form a fused model to modulate the output for the molecular property prediction. Experiments for public data set are executed and the results show that Mechanism-Data-Driven Graph Neural Network (MD-GNN) can effectively make the predicted results more accurate. Nineteen molecules by different construction are designed for potential drug discovery, the prediction from the proposed MD-GNN model shows that there are 9 candidates are discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助清新的冷松采纳,获得10
1秒前
JamesPei应助Poyd采纳,获得10
2秒前
科目三应助药学牛马采纳,获得10
3秒前
lixm发布了新的文献求助10
4秒前
NAA完成签到,获得积分10
5秒前
5秒前
tao_blue完成签到,获得积分10
5秒前
荔枝完成签到,获得积分20
5秒前
5秒前
6秒前
许多知识完成签到,获得积分10
6秒前
缓慢的战斗机完成签到,获得积分20
7秒前
圣晟胜发布了新的文献求助10
7秒前
科研通AI5应助nextconnie采纳,获得10
8秒前
陈朝旧迹完成签到,获得积分10
8秒前
无花果应助虚心海燕采纳,获得10
9秒前
sun发布了新的文献求助30
10秒前
10秒前
KBYer完成签到,获得积分10
10秒前
FashionBoy应助阳阳采纳,获得10
10秒前
许多知识发布了新的文献求助10
11秒前
苏源智完成签到,获得积分10
11秒前
Andy完成签到 ,获得积分10
13秒前
明理晓霜发布了新的文献求助10
15秒前
ZHANGMANLI0422关注了科研通微信公众号
15秒前
M先生发布了新的文献求助30
16秒前
FashionBoy应助许多知识采纳,获得10
17秒前
Poyd完成签到,获得积分10
20秒前
20秒前
故意的傲玉应助tao_blue采纳,获得10
21秒前
21秒前
kid1912完成签到,获得积分0
21秒前
小马甲应助一网小海蜇采纳,获得10
24秒前
专一的笑阳完成签到 ,获得积分10
24秒前
xuesensu完成签到 ,获得积分10
28秒前
豌豆完成签到,获得积分10
29秒前
M先生完成签到,获得积分10
29秒前
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849