已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Overview of Protein Function Prediction Methods: A Deep Learning Perspective

蛋白质功能预测 计算机科学 功能(生物学) 蛋白质功能 注释 深度学习 机器学习 人工智能 数据挖掘 生物 生物化学 进化生物学 基因
作者
Emilio Ispano,Federico Bianca,Enrico Lavezzo,Stefano Toppo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (8): 621-630 被引量:2
标识
DOI:10.2174/1574893618666230505103556
摘要

Abstract: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. : Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. : Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. : After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the bestperforming methods will use machine learning to improve their accuracy in the future. : We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyhyhyhy发布了新的文献求助10
刚刚
夜雨声烦发布了新的文献求助10
3秒前
4秒前
在水一方应助hyhyhyhy采纳,获得10
5秒前
6秒前
自由的雁完成签到 ,获得积分10
6秒前
侯恺欣完成签到,获得积分10
8秒前
栗荔完成签到 ,获得积分10
8秒前
ddddd发布了新的文献求助10
9秒前
火龙果发布了新的文献求助10
10秒前
11秒前
NexusExplorer应助认真的又夏采纳,获得10
13秒前
ljc发布了新的文献求助10
16秒前
蔡团队无敌美少女战士完成签到,获得积分10
19秒前
21秒前
小马甲应助Leffzeng采纳,获得10
22秒前
乐乐应助体贴苞络采纳,获得10
23秒前
ljc完成签到,获得积分10
26秒前
26秒前
科目三应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
27秒前
27秒前
852应助魔幻的火采纳,获得10
29秒前
顺利的飞荷完成签到,获得积分0
32秒前
zho应助一三二五七采纳,获得20
34秒前
Leffzeng完成签到,获得积分10
35秒前
英俊的铭应助刘耀文女友采纳,获得10
35秒前
彭于晏应助秋半雪采纳,获得10
35秒前
酷波er应助夜雨声烦采纳,获得10
36秒前
JamesPei应助shangguan采纳,获得10
38秒前
上官若男应助dcr4328采纳,获得10
39秒前
40秒前
怀特steel完成签到,获得积分10
41秒前
42秒前
45秒前
Luke Gee发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994300
求助须知:如何正确求助?哪些是违规求助? 3534729
关于积分的说明 11266406
捐赠科研通 3274658
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883283
科研通“疑难数据库(出版商)”最低求助积分说明 809731