An Overview of Protein Function Prediction Methods: A Deep Learning Perspective

蛋白质功能预测 计算机科学 功能(生物学) 蛋白质功能 注释 深度学习 机器学习 人工智能 数据挖掘 生物 生物化学 进化生物学 基因
作者
Emilio Ispano,Federico Bianca,Enrico Lavezzo,Stefano Toppo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (8): 621-630 被引量:1
标识
DOI:10.2174/1574893618666230505103556
摘要

Abstract: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. : Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. : Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. : After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the bestperforming methods will use machine learning to improve their accuracy in the future. : We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研r发布了新的文献求助10
1秒前
1秒前
2秒前
细胞不凋王女士完成签到,获得积分10
2秒前
神勇寄松发布了新的文献求助10
4秒前
穆紫发布了新的文献求助10
5秒前
Om发布了新的文献求助10
6秒前
9秒前
眼睛大白梦完成签到,获得积分10
10秒前
神勇寄松完成签到,获得积分10
11秒前
霓虹熄世界清完成签到,获得积分10
13秒前
李爱国应助蛋堡采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
CodeCraft应助sunshine采纳,获得10
15秒前
Yanglk完成签到,获得积分10
16秒前
yhjjj驳回了田様应助
17秒前
18秒前
666666发布了新的文献求助10
19秒前
wwsybx完成签到 ,获得积分10
20秒前
21秒前
俞秋烟发布了新的文献求助10
22秒前
Om完成签到,获得积分10
23秒前
23秒前
djsj应助熊丫丫采纳,获得10
24秒前
和谐的曼云应助熊丫丫采纳,获得10
24秒前
共享精神应助HK采纳,获得10
25秒前
狗大王发布了新的文献求助10
25秒前
26秒前
戴岱发布了新的文献求助10
26秒前
追寻荔枝完成签到 ,获得积分20
28秒前
LU发布了新的文献求助10
29秒前
洁净艳一完成签到,获得积分10
29秒前
29秒前
胡凉水完成签到,获得积分10
32秒前
32秒前
故事与她发布了新的文献求助10
32秒前
负责流口水完成签到,获得积分10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482449
求助须知:如何正确求助?哪些是违规求助? 3072108
关于积分的说明 9125778
捐赠科研通 2763936
什么是DOI,文献DOI怎么找? 1516742
邀请新用户注册赠送积分活动 701767
科研通“疑难数据库(出版商)”最低求助积分说明 700592