An Overview of Protein Function Prediction Methods: A Deep Learning Perspective

蛋白质功能预测 计算机科学 功能(生物学) 蛋白质功能 注释 深度学习 机器学习 人工智能 数据挖掘 生物 生物化学 进化生物学 基因
作者
Emilio Ispano,Federico Bianca,Enrico Lavezzo,Stefano Toppo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (8): 621-630 被引量:2
标识
DOI:10.2174/1574893618666230505103556
摘要

Abstract: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. : Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. : Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. : After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the bestperforming methods will use machine learning to improve their accuracy in the future. : We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
PTERTIM247发布了新的文献求助10
刚刚
刚刚
刚刚
清爽水风完成签到,获得积分20
刚刚
希腊白留下了新的社区评论
1秒前
大模型应助just采纳,获得10
1秒前
1秒前
隐形铃铛完成签到,获得积分10
2秒前
3秒前
zhiyu发布了新的文献求助20
3秒前
万默发布了新的文献求助10
3秒前
cleva完成签到,获得积分10
3秒前
lrrrrrrr发布了新的文献求助10
5秒前
FashionBoy应助duts采纳,获得10
5秒前
5秒前
李健的小迷弟应助当归采纳,获得10
5秒前
5秒前
阿九发布了新的文献求助10
5秒前
STAN完成签到,获得积分20
5秒前
香蕉觅云应助WDZ采纳,获得10
6秒前
NTHU_KAO发布了新的文献求助10
6秒前
6秒前
6秒前
煎锅完成签到,获得积分10
7秒前
隐形铃铛发布了新的文献求助10
7秒前
LUCY完成签到,获得积分10
7秒前
wwwwww完成签到,获得积分10
7秒前
咕唧发布了新的文献求助10
8秒前
8秒前
xxx发布了新的文献求助30
8秒前
zhouhuan完成签到,获得积分10
8秒前
9秒前
cuicy完成签到 ,获得积分10
9秒前
10秒前
今后应助April采纳,获得10
10秒前
无医完成签到,获得积分10
10秒前
cxt发布了新的文献求助10
10秒前
10秒前
所所应助小超人采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258269
求助须知:如何正确求助?哪些是违规求助? 4420207
关于积分的说明 13759573
捐赠科研通 4293737
什么是DOI,文献DOI怎么找? 2356114
邀请新用户注册赠送积分活动 1352458
关于科研通互助平台的介绍 1313270