已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Overview of Protein Function Prediction Methods: A Deep Learning Perspective

蛋白质功能预测 计算机科学 功能(生物学) 蛋白质功能 注释 深度学习 机器学习 人工智能 数据挖掘 生物 生物化学 进化生物学 基因
作者
Emilio Ispano,Federico Bianca,Enrico Lavezzo,Stefano Toppo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (8): 621-630 被引量:2
标识
DOI:10.2174/1574893618666230505103556
摘要

Abstract: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. : Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. : Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. : After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the bestperforming methods will use machine learning to improve their accuracy in the future. : We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ivan完成签到 ,获得积分10
2秒前
积极一德完成签到 ,获得积分10
3秒前
faquir发布了新的文献求助10
3秒前
8秒前
2000pluv完成签到 ,获得积分10
10秒前
Fran07发布了新的文献求助30
12秒前
leyellows完成签到 ,获得积分10
14秒前
16秒前
友好板栗完成签到,获得积分10
17秒前
小zz完成签到 ,获得积分10
25秒前
26秒前
28秒前
bkagyin应助朴素香萱采纳,获得10
29秒前
冷静初雪完成签到,获得积分10
30秒前
大模型应助简单山水采纳,获得10
32秒前
张逍遥发布了新的文献求助10
33秒前
浮浮世世发布了新的文献求助10
34秒前
dmq完成签到 ,获得积分10
37秒前
知性的夏之完成签到 ,获得积分10
38秒前
隐形曼青应助浮浮世世采纳,获得10
39秒前
40秒前
lars完成签到,获得积分10
43秒前
古渡应助张逍遥采纳,获得10
43秒前
cfffff发布了新的文献求助10
44秒前
49秒前
陨落星辰完成签到 ,获得积分10
53秒前
科研小菜狗完成签到 ,获得积分10
53秒前
accepted完成签到 ,获得积分10
55秒前
自信书文完成签到 ,获得积分10
57秒前
李爱国应助dst采纳,获得10
58秒前
58秒前
人美心善大野驴完成签到 ,获得积分10
58秒前
zsj完成签到 ,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
faquir发布了新的文献求助10
1分钟前
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
Jasper应助还单身的惜文采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524