亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Overview of Protein Function Prediction Methods: A Deep Learning Perspective

蛋白质功能预测 计算机科学 功能(生物学) 蛋白质功能 注释 深度学习 机器学习 人工智能 数据挖掘 生物 生物化学 进化生物学 基因
作者
Emilio Ispano,Federico Bianca,Enrico Lavezzo,Stefano Toppo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (8): 621-630 被引量:2
标识
DOI:10.2174/1574893618666230505103556
摘要

Abstract: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. : Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. : Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. : After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the bestperforming methods will use machine learning to improve their accuracy in the future. : We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
DNA完成签到,获得积分10
5秒前
8秒前
Asteria发布了新的文献求助10
9秒前
Wangyingjie5发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
13秒前
光轮2000发布了新的文献求助10
14秒前
Asteria完成签到,获得积分10
22秒前
22秒前
Elthrai完成签到 ,获得积分10
24秒前
光合作用完成签到,获得积分10
25秒前
HMYX完成签到 ,获得积分10
25秒前
Rrr发布了新的文献求助10
28秒前
务实书包完成签到,获得积分10
30秒前
慕青应助karstbing采纳,获得10
31秒前
32秒前
Rrr完成签到,获得积分10
35秒前
liao完成签到 ,获得积分10
40秒前
JamesPei应助飘逸皮卡丘采纳,获得10
43秒前
华仔应助foxx采纳,获得10
47秒前
52秒前
斯文败类应助刘润远采纳,获得30
54秒前
顾矜应助光轮2000采纳,获得10
54秒前
55秒前
happy发布了新的文献求助10
56秒前
56秒前
57秒前
foxx发布了新的文献求助10
59秒前
体贴花卷发布了新的文献求助10
1分钟前
1分钟前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
1分钟前
NexusExplorer应助光轮2000采纳,获得10
1分钟前
1分钟前
doctor2023发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688315
关于积分的说明 14853234
捐赠科研通 4688214
什么是DOI,文献DOI怎么找? 2540526
邀请新用户注册赠送积分活动 1506981
关于科研通互助平台的介绍 1471521