亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Overview of Protein Function Prediction Methods: A Deep Learning Perspective

蛋白质功能预测 计算机科学 功能(生物学) 蛋白质功能 注释 深度学习 机器学习 人工智能 数据挖掘 生物 生物化学 进化生物学 基因
作者
Emilio Ispano,Federico Bianca,Enrico Lavezzo,Stefano Toppo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (8): 621-630 被引量:2
标识
DOI:10.2174/1574893618666230505103556
摘要

Abstract: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. : Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. : Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. : After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the bestperforming methods will use machine learning to improve their accuracy in the future. : We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min发布了新的文献求助10
19秒前
24秒前
平常的建辉完成签到,获得积分20
27秒前
伏城完成签到 ,获得积分10
29秒前
36秒前
量子星尘发布了新的文献求助10
41秒前
45秒前
爱弥儿发布了新的文献求助10
49秒前
英姑应助爱弥儿采纳,获得10
1分钟前
1分钟前
无畏发布了新的文献求助10
1分钟前
无畏完成签到,获得积分10
1分钟前
今后应助秋日思语采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
ckmen5发布了新的文献求助10
2分钟前
li发布了新的文献求助10
2分钟前
2分钟前
2分钟前
秋日思语发布了新的文献求助10
2分钟前
Hanzoe应助袁青寒采纳,获得10
2分钟前
英姑应助可个可可采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
CipherSage应助秋日思语采纳,获得10
2分钟前
3分钟前
可个可可发布了新的文献求助10
3分钟前
zhu完成签到,获得积分10
3分钟前
3分钟前
大胆楷瑞发布了新的文献求助10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
科研通AI5应助大胆楷瑞采纳,获得10
3分钟前
大胆楷瑞完成签到,获得积分20
3分钟前
fdwang完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
ZPQ完成签到 ,获得积分10
4分钟前
Min发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611223
求助须知:如何正确求助?哪些是违规求助? 4016803
关于积分的说明 12435729
捐赠科研通 3698610
什么是DOI,文献DOI怎么找? 2039580
邀请新用户注册赠送积分活动 1072396
科研通“疑难数据库(出版商)”最低求助积分说明 956056