Distributed Task Offloading and Resource Purchasing in NOMA-Enabled Mobile Edge Computing: Hierarchical Game Theoretical Approaches

计算机科学 斯塔克伯格竞赛 纳什均衡 移动边缘计算 计算卸载 博弈论 潜在博弈 资源配置 分布式计算 边缘计算 数学优化 服务器 GSM演进的增强数据速率 计算机网络 人工智能 数学 数理经济学
作者
Ying Chen,Jie Zhao,Jintao Hu,Shaohua Wan,Jiwei Huang
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:23 (1): 1-28 被引量:32
标识
DOI:10.1145/3597023
摘要

As the computing resources and the battery capacity of mobile devices are usually limited, it is a feasible solution to offload the computation-intensive tasks generated by mobile devices to edge servers (ESs) in mobile edge computing (MEC) . In this article, we study the multi-user multi-server task offloading problem in MEC systems, where all users compete for the limited communication resources and computing resources. We formulate the offloading problem with the goal of minimizing the cost of the users and maximizing the profits of the ESs. We propose a hierarchical EETORP (Economic and Efficient Task Offloading and Resource Purchasing) framework that includes a two-stage joint optimization process. Then we prove that the problem is NP-complete. For the first stage, we formulate the offloading problem as a multi-channel access game (MCA-Game) and prove theoretically the existence of at least one Nash equilibrium strategy in MCA-Game. Next, we propose a game-based multi-channel access (GMCA) algorithm to obtain the Nash equilibrium strategy and analyze the performance guarantee of the obtained offloading strategy in the worst case. For the second stage, we model the computing resource allocation between the users and ESs by Stackelberg game theory, and reformulate the problem as a resource pricing and purchasing game (PAP-Game). We prove theoretically the property of incentive compatibility and the existence of Stackelberg equilibrium. A game-based pricing and purchasing (GPAP) algorithm is proposed. Finally, a series of both parameter analysis and comparison experiments are carried out, which validate the convergence and effectiveness of the GMCA algorithm and GPAP algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研通AI2S应助感动的老虎采纳,获得10
5秒前
乐乐应助阿乔采纳,获得10
5秒前
huenguyenvan完成签到,获得积分10
6秒前
潘Pdm完成签到,获得积分10
6秒前
6秒前
1234完成签到,获得积分10
7秒前
66完成签到,获得积分10
10秒前
zhao应助抵澳报了采纳,获得50
10秒前
隐形曼青应助上山打老虎采纳,获得10
13秒前
Junanne完成签到,获得积分10
13秒前
14秒前
15秒前
Jupiter完成签到,获得积分10
18秒前
kim完成签到 ,获得积分10
18秒前
zzz完成签到,获得积分10
18秒前
阿乔发布了新的文献求助10
19秒前
tecumseh发布了新的文献求助10
21秒前
冷酷初南完成签到,获得积分10
23秒前
玥月完成签到 ,获得积分10
25秒前
阿乔完成签到,获得积分10
26秒前
王大胖完成签到,获得积分10
27秒前
微笑青柏发布了新的文献求助10
29秒前
我是老大应助辛木采纳,获得10
31秒前
小谷完成签到 ,获得积分10
32秒前
田様应助cc采纳,获得20
33秒前
33秒前
34秒前
SciGPT应助无限盼晴采纳,获得10
34秒前
传奇3应助tecumseh采纳,获得10
34秒前
小奇发布了新的文献求助10
34秒前
甜美鱼完成签到,获得积分20
36秒前
悟空发布了新的文献求助20
39秒前
mmm发布了新的文献求助10
39秒前
xu完成签到 ,获得积分10
39秒前
映寒完成签到,获得积分10
43秒前
科研通AI2S应助甜美鱼采纳,获得10
44秒前
44秒前
tecumseh完成签到,获得积分20
45秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8634035
捐赠科研通 2648059
什么是DOI,文献DOI怎么找? 1449976
科研通“疑难数据库(出版商)”最低求助积分说明 671616
邀请新用户注册赠送积分活动 660663