Distributed Task Offloading and Resource Purchasing in NOMA-Enabled Mobile Edge Computing: Hierarchical Game Theoretical Approaches

计算机科学 斯塔克伯格竞赛 纳什均衡 移动边缘计算 计算卸载 博弈论 潜在博弈 资源配置 分布式计算 边缘计算 数学优化 服务器 GSM演进的增强数据速率 计算机网络 人工智能 数学 数理经济学
作者
Ying Chen,Jie Zhao,Jintao Hu,Shaohua Wan,Jiwei Huang
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:23 (1): 1-28 被引量:32
标识
DOI:10.1145/3597023
摘要

As the computing resources and the battery capacity of mobile devices are usually limited, it is a feasible solution to offload the computation-intensive tasks generated by mobile devices to edge servers (ESs) in mobile edge computing (MEC) . In this article, we study the multi-user multi-server task offloading problem in MEC systems, where all users compete for the limited communication resources and computing resources. We formulate the offloading problem with the goal of minimizing the cost of the users and maximizing the profits of the ESs. We propose a hierarchical EETORP (Economic and Efficient Task Offloading and Resource Purchasing) framework that includes a two-stage joint optimization process. Then we prove that the problem is NP-complete. For the first stage, we formulate the offloading problem as a multi-channel access game (MCA-Game) and prove theoretically the existence of at least one Nash equilibrium strategy in MCA-Game. Next, we propose a game-based multi-channel access (GMCA) algorithm to obtain the Nash equilibrium strategy and analyze the performance guarantee of the obtained offloading strategy in the worst case. For the second stage, we model the computing resource allocation between the users and ESs by Stackelberg game theory, and reformulate the problem as a resource pricing and purchasing game (PAP-Game). We prove theoretically the property of incentive compatibility and the existence of Stackelberg equilibrium. A game-based pricing and purchasing (GPAP) algorithm is proposed. Finally, a series of both parameter analysis and comparison experiments are carried out, which validate the convergence and effectiveness of the GMCA algorithm and GPAP algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助荒野星辰采纳,获得10
刚刚
刚刚
YHY完成签到,获得积分10
2秒前
科研通AI5应助魏伯安采纳,获得10
2秒前
caoyy发布了新的文献求助10
2秒前
3秒前
4秒前
张喻235532完成签到,获得积分10
5秒前
失眠虔纹发布了新的文献求助10
6秒前
香蕉觅云应助糊涂的小伙采纳,获得10
6秒前
6秒前
sutharsons应助科研通管家采纳,获得200
8秒前
打打应助科研通管家采纳,获得10
8秒前
axin应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
lu应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
研友_MLJldZ发布了新的文献求助10
9秒前
wys完成签到 ,获得积分10
10秒前
11秒前
michaelvin完成签到,获得积分10
11秒前
学术大白完成签到 ,获得积分10
14秒前
14秒前
SYT完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
18秒前
19秒前
19秒前
魏伯安发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849