Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff完成签到,获得积分20
刚刚
上官若男应助光影采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
所所应助Sophia采纳,获得30
4秒前
火山羊发布了新的文献求助10
5秒前
5秒前
高挑的凤灵完成签到 ,获得积分10
5秒前
小蟹发布了新的文献求助10
5秒前
哈喽完成签到,获得积分10
5秒前
Lucas应助CoverSx采纳,获得10
6秒前
和谐以冬完成签到 ,获得积分10
6秒前
6秒前
慕荣晓英发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
10秒前
weixuefeng发布了新的文献求助10
11秒前
科研通AI6.1应助b612小行星采纳,获得10
12秒前
十丶年完成签到,获得积分10
12秒前
得失完成签到 ,获得积分10
12秒前
科研通AI2S应助berry采纳,获得10
13秒前
火山羊完成签到,获得积分10
13秒前
牛诗悦发布了新的文献求助10
14秒前
所所应助自觉的书蝶采纳,获得10
16秒前
姜月发布了新的文献求助10
16秒前
16秒前
WZJ121212完成签到,获得积分10
17秒前
情怀应助lindollar采纳,获得10
18秒前
18秒前
19秒前
19秒前
一枚小汤圆完成签到,获得积分10
20秒前
21秒前
21秒前
高金龙完成签到 ,获得积分10
21秒前
大菠萝发布了新的文献求助10
22秒前
YVO4完成签到 ,获得积分10
23秒前
24秒前
24秒前
千世kk发布了新的文献求助10
26秒前
光影发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786804
求助须知:如何正确求助?哪些是违规求助? 5695899
关于积分的说明 15470615
捐赠科研通 4915507
什么是DOI,文献DOI怎么找? 2645784
邀请新用户注册赠送积分活动 1593495
关于科研通互助平台的介绍 1547840