亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
49秒前
圈圈圆了发布了新的文献求助50
55秒前
圈圈圆了完成签到,获得积分10
1分钟前
1分钟前
ala发布了新的文献求助10
1分钟前
2分钟前
乐观生活发布了新的文献求助10
2分钟前
今后应助乐观生活采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
昭荃完成签到 ,获得积分0
3分钟前
3分钟前
李健的小迷弟应助Authorll采纳,获得10
3分钟前
3分钟前
Authorll发布了新的文献求助10
4分钟前
4分钟前
Authorll完成签到,获得积分10
4分钟前
鹏虫虫发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
鹏虫虫发布了新的文献求助10
4分钟前
4分钟前
领导范儿应助隐形的妙松采纳,获得10
4分钟前
willlee发布了新的文献求助10
4分钟前
华仔应助艾艾采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
willlee完成签到,获得积分10
5分钟前
巅峰囚冰完成签到,获得积分10
5分钟前
Moto_Fang完成签到 ,获得积分10
5分钟前
5分钟前
震千筹完成签到,获得积分10
6分钟前
艾艾发布了新的文献求助10
6分钟前
rengar完成签到,获得积分10
6分钟前
kuoping完成签到,获得积分0
6分钟前
6分钟前
鹏虫虫发布了新的文献求助10
6分钟前
慕青应助余郑宇采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438545
求助须知:如何正确求助?哪些是违规求助? 4549740
关于积分的说明 14220869
捐赠科研通 4470545
什么是DOI,文献DOI怎么找? 2449937
邀请新用户注册赠送积分活动 1440904
关于科研通互助平台的介绍 1417341