Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yi111采纳,获得10
刚刚
1秒前
站走跑完成签到 ,获得积分10
2秒前
常大美女发布了新的文献求助10
2秒前
2秒前
阔达的水壶完成签到 ,获得积分10
2秒前
3秒前
科研小农民完成签到,获得积分10
3秒前
3秒前
4秒前
什么什么哇偶完成签到 ,获得积分10
4秒前
马夋发布了新的文献求助10
5秒前
decademe完成签到,获得积分10
5秒前
5秒前
roclie完成签到,获得积分10
5秒前
媛肖完成签到,获得积分10
6秒前
养猪的大哥完成签到 ,获得积分10
7秒前
yyw完成签到 ,获得积分10
7秒前
dongli6536完成签到,获得积分10
7秒前
7秒前
7秒前
孤独梦安发布了新的文献求助10
7秒前
nnnnn完成签到 ,获得积分10
8秒前
Wu完成签到 ,获得积分10
8秒前
果实发布了新的文献求助30
8秒前
会飞舞的熊完成签到 ,获得积分10
8秒前
山野村夫完成签到,获得积分10
8秒前
9秒前
小涛发布了新的文献求助10
9秒前
10秒前
10秒前
勤奋柚子完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
斯文败类应助细腻海蓝采纳,获得10
11秒前
lllll完成签到,获得积分20
12秒前
王大大完成签到,获得积分10
12秒前
小呆毛完成签到 ,获得积分10
13秒前
鲤鱼完成签到 ,获得积分10
13秒前
星辰大海应助leyi采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960337
求助须知:如何正确求助?哪些是违规求助? 3506438
关于积分的说明 11130396
捐赠科研通 3238607
什么是DOI,文献DOI怎么找? 1789826
邀请新用户注册赠送积分活动 871947
科研通“疑难数据库(出版商)”最低求助积分说明 803099