Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 材料科学 工程类 复合材料
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee完成签到,获得积分10
刚刚
硝基发布了新的文献求助10
1秒前
汉堡包应助tkdzjr12345采纳,获得10
1秒前
Y元Y完成签到,获得积分10
1秒前
JHGG完成签到,获得积分0
1秒前
1秒前
觉觉完成签到,获得积分10
2秒前
见贤思齐完成签到,获得积分10
2秒前
xian完成签到,获得积分10
3秒前
HMZ完成签到,获得积分10
3秒前
温婉的勒完成签到,获得积分10
4秒前
程哲瀚完成签到,获得积分10
4秒前
yangyangyang完成签到,获得积分10
4秒前
李爱国应助开朗满天采纳,获得10
5秒前
慕青应助sss采纳,获得10
5秒前
ff完成签到 ,获得积分10
5秒前
善学以致用应助真实的储采纳,获得10
6秒前
1112发布了新的文献求助10
6秒前
7秒前
小北完成签到,获得积分10
8秒前
Satria发布了新的文献求助10
9秒前
静静静完成签到,获得积分10
9秒前
勤恳易真完成签到,获得积分10
10秒前
笔记本完成签到,获得积分0
10秒前
爆米花应助老芋头采纳,获得10
11秒前
高大的易蓉完成签到,获得积分10
12秒前
tkdzjr12345发布了新的文献求助10
12秒前
12秒前
椿人完成签到 ,获得积分10
12秒前
liaoliaoliao完成签到,获得积分10
13秒前
硝基完成签到,获得积分10
13秒前
飘逸宛丝完成签到,获得积分10
13秒前
独立江湖女完成签到 ,获得积分10
14秒前
保持理智完成签到,获得积分10
14秒前
14秒前
1112完成签到,获得积分10
15秒前
喻亦寒完成签到,获得积分10
15秒前
小龙完成签到,获得积分10
16秒前
Leukocyte完成签到 ,获得积分10
16秒前
医路有你完成签到 ,获得积分10
18秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169