Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风雨晴鸿完成签到 ,获得积分10
2秒前
失眠的笑翠完成签到 ,获得积分10
2秒前
敏感的海雪完成签到 ,获得积分10
2秒前
XY完成签到 ,获得积分10
3秒前
zyw完成签到 ,获得积分10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
ala完成签到,获得积分10
6秒前
昵称什么的不重要啦完成签到 ,获得积分10
6秒前
seven完成签到 ,获得积分10
13秒前
取法乎上完成签到 ,获得积分10
13秒前
娟娟完成签到 ,获得积分10
14秒前
kk完成签到 ,获得积分10
15秒前
小HO完成签到 ,获得积分10
18秒前
清飏应助殷楷霖采纳,获得10
19秒前
buerzi完成签到,获得积分10
19秒前
19秒前
三清小爷完成签到,获得积分10
20秒前
wzk完成签到,获得积分10
23秒前
LaixS完成签到,获得积分10
25秒前
研友_5Z4ZA5发布了新的文献求助10
26秒前
要笑cc完成签到,获得积分10
27秒前
27秒前
宣宣宣0733完成签到,获得积分10
29秒前
辞旧完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
胡质斌完成签到,获得积分10
31秒前
轻松凌柏完成签到 ,获得积分10
31秒前
缥缈的闭月完成签到,获得积分10
31秒前
Joanne完成签到 ,获得积分10
32秒前
温暖的如冰完成签到,获得积分10
33秒前
33秒前
852应助科研通管家采纳,获得10
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
35秒前
Criminology34应助Mic采纳,获得10
35秒前
elisa828完成签到,获得积分10
36秒前
fanfan完成签到 ,获得积分10
36秒前
REBECCA完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767578
关于积分的说明 15026217
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568317
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247