Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FU发布了新的文献求助10
2秒前
xucc完成签到,获得积分10
2秒前
3秒前
小皮发布了新的文献求助10
3秒前
3秒前
隐形曼青应助ZeSheng采纳,获得10
4秒前
gy完成签到,获得积分10
5秒前
不将就发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
铭仔发布了新的文献求助10
9秒前
gxc关闭了gxc文献求助
9秒前
跳羚完成签到,获得积分10
11秒前
donk完成签到,获得积分10
12秒前
任性的诗兰完成签到,获得积分10
13秒前
14秒前
梅子黄时雨完成签到,获得积分10
15秒前
mk91发布了新的文献求助10
15秒前
孙傲完成签到,获得积分10
15秒前
铭仔完成签到,获得积分10
15秒前
小线团黑桃完成签到,获得积分10
16秒前
16秒前
科研小白完成签到,获得积分10
17秒前
PEI完成签到,获得积分10
18秒前
萱棚发布了新的文献求助10
19秒前
YOMU完成签到,获得积分10
19秒前
龙腾万里完成签到,获得积分10
20秒前
21秒前
我是老大应助青年才俊采纳,获得10
21秒前
大胆初雪发布了新的文献求助10
22秒前
22秒前
梵低发布了新的文献求助30
24秒前
无花果应助魔幻的忆南采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
小白鞋完成签到 ,获得积分10
25秒前
25秒前
sh发布了新的文献求助10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851