Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维斯完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
江姜酱先生完成签到,获得积分10
2秒前
12138发布了新的文献求助10
2秒前
2秒前
3秒前
斯内克完成签到,获得积分10
3秒前
3秒前
Ava应助白一寒采纳,获得10
3秒前
柒八染发布了新的文献求助10
4秒前
4秒前
顺心煎蛋发布了新的文献求助10
5秒前
椛鈊发布了新的文献求助10
5秒前
孤独凝海完成签到,获得积分20
5秒前
Ava应助小寒同学采纳,获得10
7秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
852应助pgg147852采纳,获得10
8秒前
nut发布了新的文献求助10
8秒前
LW发布了新的文献求助10
9秒前
健壮的弼完成签到,获得积分10
10秒前
兰闹儿发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
科研通AI6应助Starrrrre采纳,获得10
10秒前
哈哈鹿发布了新的文献求助10
10秒前
鲤鱼孤兰完成签到,获得积分10
11秒前
李健的小迷弟应助杨仔采纳,获得10
11秒前
12秒前
12秒前
13秒前
lucy完成签到,获得积分10
13秒前
13秒前
顺心煎蛋完成签到,获得积分10
13秒前
14秒前
15秒前
三三得九完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646