亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ocseek完成签到 ,获得积分10
4秒前
12秒前
17秒前
墨痕发布了新的文献求助10
18秒前
21秒前
鳗鱼柚子完成签到 ,获得积分10
26秒前
NEKO完成签到,获得积分10
30秒前
坚守完成签到 ,获得积分10
32秒前
Atticus完成签到,获得积分10
33秒前
lezbj99完成签到,获得积分10
38秒前
赤恩应助tuanheqi采纳,获得20
40秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
TXZ06完成签到,获得积分10
1分钟前
SciGPT应助wy采纳,获得10
1分钟前
Loney完成签到 ,获得积分10
1分钟前
1分钟前
威武灵阳完成签到,获得积分10
1分钟前
wy发布了新的文献求助10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
咎不可完成签到,获得积分10
1分钟前
NexusExplorer应助斯可采纳,获得10
1分钟前
jjx1005完成签到 ,获得积分10
2分钟前
知弈否发布了新的文献求助10
2分钟前
脱锦涛完成签到 ,获得积分10
2分钟前
flyinthesky完成签到,获得积分10
2分钟前
斯文的访烟完成签到,获得积分10
2分钟前
lige完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
斯可完成签到,获得积分10
2分钟前
2分钟前
Hello应助迷你的醉薇采纳,获得10
2分钟前
斯可发布了新的文献求助10
2分钟前
张晓祁完成签到,获得积分10
2分钟前
Hello应助俏皮芷蕊采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568162
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701881
捐赠科研通 4594488
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696