Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits

深度学习 随机森林 卷积神经网络 土地覆盖 计算机科学 人工智能 比例(比率) 航程(航空) 像素 人工神经网络 遥感 上下文图像分类 模式识别(心理学) 机器学习 土地利用 地图学 地理 图像(数学) 土木工程 工程类 复合材料 材料科学
作者
Giorgos Mountrakis,Shahriar S. Heydari
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:200: 106-119 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.05.005
摘要

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat observations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 8 observations were combined within the continental United States to create one of the largest to date reference dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respectively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping method, the Random Forest (RF). Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 accuracy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for improved mapping capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助爱听歌的成仁采纳,获得10
刚刚
万能图书馆应助Master_Ye采纳,获得10
刚刚
1秒前
小土豆发布了新的文献求助10
1秒前
An发布了新的文献求助10
1秒前
顶端哥发顶刊完成签到,获得积分10
2秒前
3秒前
coco发布了新的文献求助10
3秒前
香蕉觅云应助雪山采纳,获得10
3秒前
石头完成签到,获得积分10
3秒前
烟花应助认真的孤风采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
爱笑雨竹完成签到,获得积分10
3秒前
思源应助LaTeXer采纳,获得10
4秒前
4秒前
科研通AI6应助我爱乒乓球采纳,获得10
4秒前
5秒前
dingdingding发布了新的文献求助10
6秒前
77发布了新的文献求助10
6秒前
7秒前
害羞雨南完成签到,获得积分10
7秒前
huangxq完成签到,获得积分10
7秒前
7秒前
Akim应助淡然篮球采纳,获得10
7秒前
所所应助缥缈的青旋采纳,获得10
7秒前
科研通AI6应助徐zhipei采纳,获得30
7秒前
替罗非班发布了新的文献求助10
7秒前
myp完成签到,获得积分10
7秒前
lzx666发布了新的文献求助10
8秒前
8秒前
昱旻完成签到 ,获得积分10
8秒前
Akim应助香蕉静芙采纳,获得10
8秒前
9秒前
9秒前
昵称发布了新的文献求助10
9秒前
研友_VZG7GZ应助JI采纳,获得20
10秒前
Dean应助yydsyyd采纳,获得50
10秒前
追寻的访烟完成签到,获得积分10
10秒前
李哈哈发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437