Multi-scale adaptive low-light image enhancement based on deep learning

计算机科学 人工智能 计算机视觉 噪音(视频) 图像噪声 水准点(测量) 图像质量 降噪 能见度 图像(数学) 光学 大地测量学 物理 地理
作者
Taotao Cao,Taile Peng,Hao Wang,Xiaotong Zhu,Jia Guo,Zhen Zhang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (04)
标识
DOI:10.1117/1.jei.33.4.043033
摘要

Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的傲蕾完成签到,获得积分10
刚刚
刚刚
Supper完成签到 ,获得积分10
刚刚
充电宝应助净水涟漪采纳,获得10
1秒前
JamesPei应助迪迦采纳,获得10
1秒前
huang1499完成签到,获得积分20
1秒前
1秒前
激情的灰狼应助weiwei采纳,获得10
1秒前
11发布了新的文献求助10
1秒前
1秒前
忘我实多完成签到,获得积分10
2秒前
3秒前
inzaghi发布了新的文献求助10
3秒前
搜集达人应助11采纳,获得10
3秒前
huang1499发布了新的文献求助10
4秒前
舒适忆枫发布了新的文献求助10
4秒前
科研废材完成签到,获得积分10
4秒前
zll发布了新的文献求助10
4秒前
5秒前
5秒前
泽佑完成签到,获得积分20
5秒前
5秒前
Jasper应助LIU采纳,获得10
6秒前
6秒前
6秒前
xinxin发布了新的文献求助30
6秒前
昔我往矣发布了新的文献求助10
7秒前
liu完成签到,获得积分10
7秒前
7秒前
7秒前
smottom应助cyj采纳,获得10
7秒前
Icy发布了新的文献求助700
8秒前
量子星尘发布了新的文献求助10
8秒前
scq666666完成签到,获得积分20
9秒前
小坤同学发布了新的文献求助10
9秒前
布哲哲哲完成签到,获得积分10
9秒前
blueming完成签到,获得积分10
9秒前
10秒前
舒适忆枫完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224