Multi-scale adaptive low-light image enhancement based on deep learning

计算机科学 人工智能 计算机视觉 噪音(视频) 图像噪声 水准点(测量) 图像质量 降噪 能见度 图像(数学) 光学 大地测量学 物理 地理
作者
Taotao Cao,Taile Peng,Hao Wang,Xiaotong Zhu,Jia Guo,Zhen Zhang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (04)
标识
DOI:10.1117/1.jei.33.4.043033
摘要

Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
传奇3应助完美怜菡采纳,获得10
2秒前
3秒前
我是老大应助柚子采纳,获得10
3秒前
研友_GZbjPZ完成签到,获得积分10
4秒前
光亮的元容完成签到,获得积分10
4秒前
hong完成签到,获得积分10
5秒前
开朗棉花糖完成签到,获得积分10
5秒前
小杜发布了新的文献求助10
7秒前
8秒前
落尘完成签到 ,获得积分10
9秒前
Una发布了新的文献求助10
9秒前
土土完成签到,获得积分10
10秒前
yimengze完成签到,获得积分10
10秒前
汉堡包应助专一的摩托车采纳,获得10
12秒前
14秒前
tao完成签到,获得积分10
17秒前
小杜发布了新的文献求助20
18秒前
18秒前
20秒前
petrichor完成签到 ,获得积分10
20秒前
无极微光应助kndfsfmf采纳,获得20
21秒前
童童发布了新的文献求助10
21秒前
Robin发布了新的文献求助10
22秒前
23秒前
24秒前
阔达水之完成签到,获得积分10
28秒前
29秒前
29秒前
nan完成签到,获得积分10
29秒前
明天吖在吗完成签到,获得积分10
30秒前
30秒前
31秒前
zzf完成签到 ,获得积分10
32秒前
Nell发布了新的文献求助10
33秒前
秋半梦完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565478
求助须知:如何正确求助?哪些是违规求助? 4650535
关于积分的说明 14691776
捐赠科研通 4592467
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244