Multi-scale adaptive low-light image enhancement based on deep learning

计算机科学 人工智能 计算机视觉 噪音(视频) 图像噪声 水准点(测量) 图像质量 降噪 能见度 图像(数学) 光学 大地测量学 物理 地理
作者
Taotao Cao,Taile Peng,Hao Wang,Xiaotong Zhu,Jia Guo,Zhen Zhang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (04)
标识
DOI:10.1117/1.jei.33.4.043033
摘要

Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后如之完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
simon666完成签到,获得积分10
3秒前
maybe完成签到,获得积分10
3秒前
卡片完成签到,获得积分10
3秒前
MaxwellZH完成签到,获得积分10
4秒前
愤怒的水绿完成签到,获得积分10
7秒前
hahaha6789y完成签到,获得积分10
7秒前
junzzz完成签到 ,获得积分10
7秒前
霡霂完成签到,获得积分10
7秒前
BlueKitty完成签到,获得积分10
8秒前
Walton完成签到,获得积分10
9秒前
cl完成签到,获得积分10
9秒前
sheep完成签到,获得积分10
9秒前
Bake完成签到 ,获得积分10
9秒前
surlamper完成签到,获得积分10
10秒前
Mo完成签到,获得积分10
10秒前
hahaha2完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
婉枫完成签到,获得积分10
11秒前
徐彬荣完成签到,获得积分10
11秒前
往昔不过微澜完成签到,获得积分10
11秒前
spider534完成签到,获得积分10
12秒前
好好应助科研通管家采纳,获得10
12秒前
好好应助科研通管家采纳,获得10
12秒前
好好应助科研通管家采纳,获得10
12秒前
好好应助科研通管家采纳,获得10
12秒前
12秒前
好好应助科研通管家采纳,获得10
12秒前
12秒前
TGU的小马同学完成签到 ,获得积分10
12秒前
12秒前
12秒前
量子咸鱼K完成签到,获得积分10
13秒前
冰冻芋头完成签到,获得积分10
13秒前
hahaha1完成签到,获得积分10
13秒前
fate完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797