Multi-scale adaptive low-light image enhancement based on deep learning

计算机科学 人工智能 计算机视觉 噪音(视频) 图像噪声 水准点(测量) 图像质量 降噪 能见度 图像(数学) 光学 大地测量学 物理 地理
作者
Taotao Cao,Taile Peng,Hao Wang,Xiaotong Zhu,Jia Guo,Zhen Zhang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (04)
标识
DOI:10.1117/1.jei.33.4.043033
摘要

Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿尔卑斯完成签到,获得积分20
刚刚
刚刚
刚刚
s1y完成签到 ,获得积分10
刚刚
科研通AI6应助Alaska采纳,获得10
1秒前
兔子发布了新的文献求助10
1秒前
城九寒发布了新的文献求助10
1秒前
哭泣飞瑶发布了新的文献求助10
1秒前
科研通AI6应助承乐采纳,获得10
1秒前
脑洞疼应助紧张的毛衣采纳,获得10
1秒前
欧皇完成签到,获得积分10
1秒前
SciGPT应助优美猕猴桃采纳,获得10
2秒前
淡淡的小蘑菇完成签到,获得积分10
2秒前
天天快乐应助15134786587采纳,获得10
2秒前
sugkook完成签到,获得积分10
3秒前
小松徐完成签到,获得积分10
3秒前
wcx发布了新的文献求助10
4秒前
家里蹲高材生完成签到,获得积分10
4秒前
LLLLL发布了新的文献求助10
4秒前
在水一方应助Southluuu采纳,获得10
4秒前
lllsssqqq完成签到,获得积分10
4秒前
4秒前
菜菜鱼发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Silence发布了新的文献求助10
5秒前
酷波er应助晏清采纳,获得10
5秒前
科目三应助小吉麻麻采纳,获得10
6秒前
vadz7x应助liupangzi采纳,获得10
6秒前
7秒前
shepherd应助馒头采纳,获得30
7秒前
111发布了新的文献求助10
8秒前
搜集达人应助魔法世界采纳,获得10
8秒前
方兰笙发布了新的文献求助10
8秒前
充电宝应助哭泣飞瑶采纳,获得10
8秒前
小松徐发布了新的文献求助20
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603