药方
计算机科学
基线(sea)
人工智能
中医药
自然语言处理
医学
替代医学
海洋学
病理
药理学
地质学
作者
Rui Hua,Dong Xin,Yu Wei,Zixin Shu,Pengcheng Yang,Yunhui Hu,Shuiping Zhou,He Sun,Kaijing Yan,Xijun Yan,Kai Chang,Xiaodong Li,Yuning Bai,Runshun Zhang,Wenjia Wang,Xuezhong Zhou
标识
DOI:10.1093/jamia/ocae087
摘要
Abstract Objective The recent surge in large language models (LLMs) across various fields has yet to be fully realized in traditional Chinese medicine (TCM). This study aims to bridge this gap by developing a large language model tailored to TCM knowledge, enhancing its performance and accuracy in clinical reasoning tasks such as diagnosis, treatment, and prescription recommendations. Materials and Methods This study harnessed a wide array of TCM data resources, including TCM ancient books, textbooks, and clinical data, to create 3 key datasets: the TCM Pre-trained Dataset, the Traditional Chinese Patent Medicine (TCPM) Question Answering Dataset, and the Spleen and Stomach Herbal Prescription Recommendation Dataset. These datasets underpinned the development of the Lingdan Pre-trained LLM and 2 specialized models: the Lingdan-TCPM-Chat Model, which uses a Chain-of-Thought process for symptom analysis and TCPM recommendation, and a Lingdan Prescription Recommendation model (Lingdan-PR) that proposes herbal prescriptions based on electronic medical records. Results The Lingdan-TCPM-Chat and the Lingdan-PR Model, fine-tuned on the Lingdan Pre-trained LLM, demonstrated state-of-the art performances for the tasks of TCM clinical knowledge answering and herbal prescription recommendation. Notably, Lingdan-PR outperformed all state-of-the-art baseline models, achieving an improvement of 18.39% in the Top@20 F1-score compared with the best baseline. Conclusion This study marks a pivotal step in merging advanced LLMs with TCM, showcasing the potential of artificial intelligence to help improve clinical decision-making of medical diagnostics and treatment strategies. The success of the Lingdan Pre-trained LLM and its derivative models, Lingdan-TCPM-Chat and Lingdan-PR, not only revolutionizes TCM practices but also opens new avenues for the application of artificial intelligence in other specialized medical fields. Our project is available at https://github.com/TCMAI-BJTU/LingdanLLM.
科研通智能强力驱动
Strongly Powered by AbleSci AI