亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning Survey: A Multi-Level Taxonomy of Aggregation Techniques, Experimental Insights, and Future Frontiers

计算机科学 可扩展性 数据科学 稳健性(进化) 数据聚合器 个性化 人工智能 机器学习 万维网 无线传感器网络 计算机网络 生物化学 化学 数据库 基因
作者
Meriem Arbaoui,Mohamed-El-Amine Brahmia,Abdellatif Rahmoun,Mourad Zghal
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
标识
DOI:10.1145/3678182
摘要

The emerging integration of IoT (Internet of Things) and AI (Artificial Intelligence) has unlocked numerous opportunities for innovation across diverse industries. However, growing privacy concerns and data isolation issues have inhibited this promising advancement. Unfortunately, traditional centralized machine learning (ML) methods have demonstrated their limitations in addressing these hurdles. In response to this ever-evolving landscape, Federated Learning (FL) has surfaced as a cutting-edge machine learning paradigm, enabling collaborative training across decentralized devices. FL allows users to jointly construct AI models without sharing their local raw data, ensuring data privacy, network scalability, and minimal data transfer. One essential aspect of FL revolves around proficient knowledge aggregation within a heterogeneous environment. Yet, the inherent characteristics of FL have amplified the complexity of its practical implementation compared to centralized ML. This survey delves into three prominent clusters of FL research contributions: personalization, optimization, and robustness. The objective is to provide a well-structured and fine-grained classification scheme related to these research areas through a unique methodology for selecting related work. Unlike other survey papers, we employed a hybrid approach that amalgamates bibliometric analysis and systematic scrutinizing to find the most influential work in the literature. Therefore, we examine challenges and contemporary techniques related to heterogeneity, efficiency, security, and privacy. Another valuable asset of this study is its comprehensive coverage of FL aggregation strategies, encompassing architectural features, synchronization methods, and several federation motivations. To further enrich our investigation, we provide practical insights into evaluating novel FL proposals and conduct experiments to assess and compare aggregation methods under IID and non-IID data distributions. Finally, we present a compelling set of research avenues that call for further exploration to open up a treasure of advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稻子完成签到 ,获得积分10
1分钟前
1分钟前
Londidi完成签到,获得积分10
1分钟前
学术混子完成签到,获得积分10
3分钟前
souther完成签到,获得积分0
3分钟前
xuli21315完成签到 ,获得积分10
3分钟前
4分钟前
FUNG完成签到 ,获得积分10
4分钟前
5分钟前
yang发布了新的文献求助10
5分钟前
yang完成签到,获得积分20
6分钟前
Jonas完成签到,获得积分10
7分钟前
摆烂的熊猫完成签到,获得积分20
7分钟前
柔弱的恋风完成签到 ,获得积分10
9分钟前
9分钟前
ding应助淡然平蓝采纳,获得10
9分钟前
chiazy完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
爱静静完成签到,获得积分0
10分钟前
zyx完成签到,获得积分10
10分钟前
wy123完成签到 ,获得积分10
10分钟前
善学以致用应助markzhang采纳,获得10
11分钟前
12分钟前
markzhang发布了新的文献求助10
12分钟前
喜雨起来啦完成签到,获得积分10
12分钟前
SciGPT应助markzhang采纳,获得10
12分钟前
科研通AI2S应助zhouleiwang采纳,获得10
13分钟前
冬去春来完成签到 ,获得积分10
13分钟前
烟花应助zhouleiwang采纳,获得10
14分钟前
上官若男应助碧蓝一德采纳,获得10
14分钟前
14分钟前
yy发布了新的文献求助10
14分钟前
14分钟前
顾矜应助yy采纳,获得10
14分钟前
烟花应助科研通管家采纳,获得10
14分钟前
markzhang发布了新的文献求助10
14分钟前
yy完成签到,获得积分10
14分钟前
markzhang完成签到,获得积分10
15分钟前
15分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7807027
捐赠科研通 2449875
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328