Tracing Microplastic Aging Processes Using Multimodal Deep Learning: A Predictive Model for Enhanced Traceability

微塑料 追踪 过程(计算) 深度学习 可追溯性 人工智能 环境科学 计算机科学 生化工程 机器学习 生物系统 化学 环境化学 工程类 软件工程 操作系统 生物
作者
Yunlong Li,Xue Wang,Han Zhang,Qing Wang,Xun Cao,Rongyi Gong,Jianli Guo,Jiajia Shan
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.est.4c05022
摘要

The aging process of microplastics (MPs) affects their surface physicochemical properties, thereby influencing their behaviors in releasing harmful chemicals, adsorption of organic contaminants, sinking, and more. Understanding the aging process is crucial for evaluating MPs' environmental behaviors and risks, but tracing the aging process remains challenging. Here, we propose a multimodal deep learning model to trace typical aging factors of aged MPs based on MPs' physicochemical characteristics. A total of 1353 surface morphology images and 1353 Fourier transform infrared spectroscopy spectra were achieved from 130 aged MPs undergoing different aging processes, demonstrating that physicochemical properties of aged MPs vary from aging processes. The multimodal deep learning model achieved an accuracy of 93% in predicting the major aging factors of aged MPs. The multimodal deep learning model improves the model's accuracy by approximately 5-20% and reduces prediction bias compared to the single-modal model. In practice, the established model was performed to predict the major aging factors of naturally aged MPs collected from typical environment matrices. The prediction results aligned with the aging conditions of specific environments, as reported in previous studies. Our findings provide new insights into tracing and understanding the plastic aging process, contributing more accurately to the environmental risk assessment of aged MPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobao发布了新的文献求助10
3秒前
研友_ngkyGn应助DENG采纳,获得20
3秒前
4秒前
张达完成签到 ,获得积分20
5秒前
我不是很帅完成签到,获得积分10
6秒前
8秒前
9秒前
彪壮的机器猫完成签到 ,获得积分10
10秒前
13秒前
王二哈发布了新的文献求助10
14秒前
15秒前
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
陌疑应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
万能图书馆应助颜大大采纳,获得10
16秒前
xiaoting发布了新的文献求助10
17秒前
听话的代芙完成签到 ,获得积分10
18秒前
牛牛眉目发布了新的文献求助10
19秒前
无私海之完成签到,获得积分10
20秒前
艳子发布了新的文献求助10
21秒前
亚鹏完成签到,获得积分10
22秒前
铎幸福完成签到,获得积分10
22秒前
颜大大完成签到,获得积分20
26秒前
爆米花应助xiaoting采纳,获得10
28秒前
玩命的易绿应助无私海之采纳,获得10
28秒前
karL完成签到,获得积分10
29秒前
29秒前
白桃乌龙完成签到,获得积分10
31秒前
颜大大发布了新的文献求助10
32秒前
深情安青应助Solitarywall采纳,获得10
35秒前
35秒前
越野完成签到 ,获得积分10
37秒前
Amy完成签到 ,获得积分10
38秒前
cat发布了新的文献求助50
40秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351