亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tracing Microplastic Aging Processes Using Multimodal Deep Learning: A Predictive Model for Enhanced Traceability

微塑料 追踪 过程(计算) 深度学习 可追溯性 人工智能 环境科学 计算机科学 生化工程 机器学习 生物系统 化学 环境化学 工程类 软件工程 操作系统 生物
作者
Yunlong Li,Xue Wang,Han Zhang,Qing Wang,Xun Cao,Rongyi Gong,Jianli Guo,Jiajia Shan
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.est.4c05022
摘要

The aging process of microplastics (MPs) affects their surface physicochemical properties, thereby influencing their behaviors in releasing harmful chemicals, adsorption of organic contaminants, sinking, and more. Understanding the aging process is crucial for evaluating MPs' environmental behaviors and risks, but tracing the aging process remains challenging. Here, we propose a multimodal deep learning model to trace typical aging factors of aged MPs based on MPs' physicochemical characteristics. A total of 1353 surface morphology images and 1353 Fourier transform infrared spectroscopy spectra were achieved from 130 aged MPs undergoing different aging processes, demonstrating that physicochemical properties of aged MPs vary from aging processes. The multimodal deep learning model achieved an accuracy of 93% in predicting the major aging factors of aged MPs. The multimodal deep learning model improves the model's accuracy by approximately 5-20% and reduces prediction bias compared to the single-modal model. In practice, the established model was performed to predict the major aging factors of naturally aged MPs collected from typical environment matrices. The prediction results aligned with the aging conditions of specific environments, as reported in previous studies. Our findings provide new insights into tracing and understanding the plastic aging process, contributing more accurately to the environmental risk assessment of aged MPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助害羞的采波采纳,获得10
16秒前
oscar完成签到,获得积分10
40秒前
andrele应助科研通管家采纳,获得10
49秒前
MchemG应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
MchemG应助科研通管家采纳,获得10
49秒前
MchemG应助科研通管家采纳,获得10
49秒前
1分钟前
1分钟前
WHM25完成签到,获得积分10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
1分钟前
FashionBoy应助害羞的采波采纳,获得10
2分钟前
Marciu33完成签到,获得积分10
2分钟前
TheaGao完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
twk发布了新的文献求助10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
大个应助twk采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
小杏韵发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
bonster应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得150
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
回笼觉教主完成签到,获得积分20
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671265
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778510
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991