亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications

传感器融合 情态动词 计算机科学 融合 保险丝(电气) 模式 人工智能 噪音(视频) 数据挖掘 机器学习 数据科学 工程类 哲学 社会学 电气工程 图像(数学) 化学 高分子化学 语言学 社会科学
作者
Tianzhe Jiao,Chaopeng Guo,Xiaoyue Feng,Yuming Chen,Jie Song
出处
期刊:Computers, materials & continua 卷期号:80 (1): 1-35 被引量:9
标识
DOI:10.32604/cmc.2024.053204
摘要

Multi-modal fusion technology gradually become a fundamental task in many fields, such as autonomous driving, smart healthcare, sentiment analysis, and human-computer interaction. It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities. Under complex scenes, multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions. However, achieving outstanding performance is challenging because of equipment performance limitations, missing information, and data noise. This paper comprehensively reviews existing methods based on multi-modal fusion techniques and completes a detailed and in-depth analysis. According to the data fusion stage, multi-modal fusion has four primary methods: early fusion, deep fusion, late fusion, and hybrid fusion. The paper surveys the three major multi-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields. Finally, it discusses the challenges and explores potential research opportunities. Multi-modal tasks still need intensive study because of data heterogeneity and quality. Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology. Invalid data fusion methods may introduce extra noise and lead to worse results. This paper provides a comprehensive and detailed summary in response to these challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
28秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
32秒前
32秒前
32秒前
32秒前
33秒前
nsc发布了新的文献求助10
34秒前
nsc发布了新的文献求助10
34秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264