CWF: Consolidating Weak Features in High-quality Mesh Simplification

计算机科学 质量(理念) 计算机图形学(图像) 计算科学 物理 量子力学
作者
Rui Xu,Longdu Liu,Ningna Wang,Shuangmin Chen,Shiqing Xin,Xiaohu Guo,Zichun Zhong,Taku Komura,Wenping Wang,Changhe Tu
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:43 (4): 1-14 被引量:2
标识
DOI:10.1145/3658159
摘要

In mesh simplification, common requirements like accuracy, triangle quality, and feature alignment are often considered as a trade-off. Existing algorithms concentrate on just one or a few specific aspects of these requirements. For example, the well-known Quadric Error Metrics (QEM) approach [Garland and Heckbert 1997] prioritizes accuracy and can preserve strong feature lines/points as well, but falls short in ensuring high triangle quality and may degrade weak features that are not as distinctive as strong ones. In this paper, we propose a smooth functional that simultaneously considers all of these requirements. The functional comprises a normal anisotropy term and a Centroidal Voronoi Tessellation (CVT) [Du et al. 1999] energy term, with the variables being a set of movable points lying on the surface. The former inherits the spirit of QEM but operates in a continuous setting, while the latter encourages even point distribution, allowing various surface metrics. We further introduce a decaying weight to automatically balance the two terms. We selected 100 CAD models from the ABC dataset [Koch et al. 2019], along with 21 organic models, to compare the existing mesh simplification algorithms with ours. Experimental results reveal an important observation: the introduction of a decaying weight effectively reduces the conflict between the two terms and enables the alignment of weak features. This distinctive feature sets our approach apart from most existing mesh simplification methods and demonstrates significant potential in shape understanding. Please refer to the teaser figure for illustration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助lllhk采纳,获得10
刚刚
崔同学完成签到,获得积分20
2秒前
6秒前
重要英姑完成签到 ,获得积分10
9秒前
haibing完成签到,获得积分10
11秒前
小王同学完成签到 ,获得积分10
11秒前
cc发布了新的文献求助10
11秒前
12秒前
百香果关注了科研通微信公众号
17秒前
sml发布了新的文献求助10
18秒前
铠甲勇士完成签到,获得积分10
18秒前
19秒前
糊涂涂完成签到,获得积分10
19秒前
7091应助天真的皓轩采纳,获得10
22秒前
hilton完成签到 ,获得积分10
22秒前
22秒前
22秒前
lllhk发布了新的文献求助10
24秒前
在水一方应助韩凡采纳,获得10
25秒前
火星上的枕头完成签到 ,获得积分10
25秒前
百香果发布了新的文献求助10
28秒前
星空发布了新的文献求助10
30秒前
30秒前
31秒前
wlz完成签到,获得积分10
34秒前
NovermberRain完成签到,获得积分10
35秒前
爆米花应助张菲菲采纳,获得30
35秒前
123发布了新的文献求助10
37秒前
sa发布了新的文献求助10
37秒前
科研通AI2S应助elivsZhou采纳,获得200
39秒前
dadadaniu发布了新的文献求助10
41秒前
43秒前
whisper完成签到,获得积分10
48秒前
香蕉觅云应助zycdx3906采纳,获得10
49秒前
sunjiayue1226给sunjiayue1226的求助进行了留言
49秒前
50秒前
Ava应助whisper采纳,获得10
54秒前
Damy完成签到,获得积分10
54秒前
elivsZhou发布了新的文献求助200
55秒前
57秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675356
求助须知:如何正确求助?哪些是违规求助? 3230248
关于积分的说明 9789187
捐赠科研通 2941036
什么是DOI,文献DOI怎么找? 1612327
邀请新用户注册赠送积分活动 761068
科研通“疑难数据库(出版商)”最低求助积分说明 736602