亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LDConv: Linear deformable convolution for improving convolutional neural networks

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Xin Zhang,Yingze Song,Tingting Song,Degang Yang,Yichen Ye,Jie Zhou,Liming Zhang
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:149: 105190-105190 被引量:119
标识
DOI:10.1016/j.imavis.2024.105190
摘要

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation is confined to a local window, so it cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k × k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. Although Deformable Convolution (Deformable Conv) address the problem of fixed sampling of standard convolutions, the number of parameters also tends to grow in a squared manner, and Deformable Conv do not explore the effect of different initial sample shapes on network performance. In response to the above questions, the Linear Deformable Convolution (LDConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In LDConv, a novel coordinate generation algorithm is defined to generate different initial sampled positions for convolutional kernels of arbitrary size. To adapt to changing targets, offsets are introduced to adjust the shape of the samples at each position. LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth. Compared to Deformable Conv, LDConv provides richer choices and can be equivalent to deformable convolution when the number of parameters of LDConv is set to the square of K. Differently, this paper also explores the effect of neural networks by using LDConv with the same size and different initial sampling shapes. LDConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampled shapes. Object detection experiments on representative datasets COCO2017, VOC 7 + 12, and VisDrone-DET2021 fully demonstrate the advantages of LDConv. LDConv is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/LDConv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重念文完成签到 ,获得积分10
刚刚
2秒前
3秒前
shaun发布了新的文献求助10
4秒前
4秒前
z_rainbow发布了新的文献求助10
8秒前
9秒前
西瓜发布了新的文献求助10
9秒前
13秒前
优pp完成签到 ,获得积分10
14秒前
LMX完成签到 ,获得积分10
15秒前
shaun完成签到,获得积分10
16秒前
雪白砖家完成签到 ,获得积分10
19秒前
冉容完成签到 ,获得积分10
26秒前
36秒前
TwinQ完成签到,获得积分20
38秒前
40秒前
子焱完成签到 ,获得积分10
42秒前
Wangyingjie5发布了新的文献求助10
43秒前
43秒前
飞蚁完成签到 ,获得积分10
45秒前
英俊的铭应助科研通管家采纳,获得10
52秒前
52秒前
英俊的铭应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
52秒前
kyokyoro完成签到,获得积分10
52秒前
LYP发布了新的文献求助10
55秒前
super发布了新的文献求助10
56秒前
lin完成签到 ,获得积分10
59秒前
Stroeve完成签到,获得积分10
1分钟前
自觉的夏之完成签到,获得积分10
1分钟前
西西弗斯的石头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wtian完成签到,获得积分10
1分钟前
LYP完成签到,获得积分20
1分钟前
oolivy完成签到,获得积分10
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688305
关于积分的说明 14853142
捐赠科研通 4687876
什么是DOI,文献DOI怎么找? 2540473
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508