亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LDConv: Linear deformable convolution for improving convolutional neural networks

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Xin Zhang,Yingze Song,Tingting Song,Degang Yang,Yichen Ye,Jie Zhou,Liming Zhang
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:149: 105190-105190 被引量:2
标识
DOI:10.1016/j.imavis.2024.105190
摘要

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation is confined to a local window, so it cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k × k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. Although Deformable Convolution (Deformable Conv) address the problem of fixed sampling of standard convolutions, the number of parameters also tends to grow in a squared manner, and Deformable Conv do not explore the effect of different initial sample shapes on network performance. In response to the above questions, the Linear Deformable Convolution (LDConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In LDConv, a novel coordinate generation algorithm is defined to generate different initial sampled positions for convolutional kernels of arbitrary size. To adapt to changing targets, offsets are introduced to adjust the shape of the samples at each position. LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth. Compared to Deformable Conv, LDConv provides richer choices and can be equivalent to deformable convolution when the number of parameters of LDConv is set to the square of K. Differently, this paper also explores the effect of neural networks by using LDConv with the same size and different initial sampling shapes. LDConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampled shapes. Object detection experiments on representative datasets COCO2017, VOC 7 + 12, and VisDrone-DET2021 fully demonstrate the advantages of LDConv. LDConv is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/LDConv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助糊涂的清醒者采纳,获得10
23秒前
33秒前
37秒前
林利芳完成签到 ,获得积分10
44秒前
52秒前
56秒前
wuyuan9588完成签到 ,获得积分10
1分钟前
xiewuhua完成签到,获得积分10
1分钟前
2分钟前
April完成签到 ,获得积分10
2分钟前
WWXWWX发布了新的文献求助30
2分钟前
阔达的乘云完成签到 ,获得积分10
2分钟前
WWXWWX发布了新的文献求助10
3分钟前
3分钟前
Orange应助阔达的乘云采纳,获得10
3分钟前
4分钟前
5分钟前
WWXWWX发布了新的文献求助30
5分钟前
supermaltose完成签到,获得积分10
5分钟前
eccentric发布了新的文献求助20
5分钟前
eccentric完成签到,获得积分10
5分钟前
哈哈发布了新的文献求助10
7分钟前
爆米花应助摇摇猪采纳,获得10
7分钟前
7分钟前
tuanheqi应助李剑鸿采纳,获得500
7分钟前
Magali应助科研通管家采纳,获得20
7分钟前
烟花应助科研通管家采纳,获得10
7分钟前
Magali应助科研通管家采纳,获得10
7分钟前
李剑鸿发布了新的文献求助1000
8分钟前
9分钟前
摇摇猪发布了新的文献求助10
9分钟前
9分钟前
杰青发布了新的文献求助10
9分钟前
李健的小迷弟应助摇摇猪采纳,获得10
9分钟前
杰青完成签到,获得积分10
9分钟前
小青新完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
xz完成签到 ,获得积分10
10分钟前
玛卡巴卡发布了新的文献求助10
10分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818678
关于积分的说明 7921864
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438