LDConv: Linear deformable convolution for improving convolutional neural networks

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Xin Zhang,Yingze Song,Tingting Song,Degang Yang,Yichen Ye,Jie Zhou,Liming Zhang
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:149: 105190-105190 被引量:42
标识
DOI:10.1016/j.imavis.2024.105190
摘要

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation is confined to a local window, so it cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k × k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. Although Deformable Convolution (Deformable Conv) address the problem of fixed sampling of standard convolutions, the number of parameters also tends to grow in a squared manner, and Deformable Conv do not explore the effect of different initial sample shapes on network performance. In response to the above questions, the Linear Deformable Convolution (LDConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In LDConv, a novel coordinate generation algorithm is defined to generate different initial sampled positions for convolutional kernels of arbitrary size. To adapt to changing targets, offsets are introduced to adjust the shape of the samples at each position. LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth. Compared to Deformable Conv, LDConv provides richer choices and can be equivalent to deformable convolution when the number of parameters of LDConv is set to the square of K. Differently, this paper also explores the effect of neural networks by using LDConv with the same size and different initial sampling shapes. LDConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampled shapes. Object detection experiments on representative datasets COCO2017, VOC 7 + 12, and VisDrone-DET2021 fully demonstrate the advantages of LDConv. LDConv is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/LDConv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银鱼在游完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
威武飞双发布了新的文献求助10
刚刚
刚刚
kamola0807完成签到,获得积分10
1秒前
笨笨秋白发布了新的文献求助10
1秒前
滕擎发布了新的文献求助10
1秒前
1秒前
从雪完成签到,获得积分10
2秒前
fu发布了新的文献求助10
2秒前
楠楠发布了新的文献求助10
2秒前
666完成签到,获得积分20
2秒前
荼蘼发布了新的文献求助10
2秒前
HHH完成签到,获得积分10
3秒前
667发布了新的文献求助10
3秒前
琂当归完成签到,获得积分10
4秒前
4秒前
LTDJYYD发布了新的文献求助10
4秒前
kamola0807发布了新的文献求助30
4秒前
坚定的小蘑菇完成签到 ,获得积分10
4秒前
Jordon完成签到,获得积分10
5秒前
个性的紫菜应助我是波少采纳,获得30
5秒前
5秒前
5秒前
5秒前
赘婿应助李大豆采纳,获得10
6秒前
调皮初蓝发布了新的文献求助10
6秒前
8秒前
zm完成签到 ,获得积分10
8秒前
8秒前
楠楠完成签到,获得积分10
9秒前
稚生w完成签到,获得积分10
9秒前
wsgdhz发布了新的文献求助10
10秒前
哈哈哈哈发布了新的文献求助10
10秒前
斯文败类应助Zhang采纳,获得10
10秒前
CipherSage应助Nikki采纳,获得10
10秒前
高高海安完成签到,获得积分20
12秒前
研友_nqrKQZ发布了新的文献求助10
12秒前
Sherlock发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588123
求助须知:如何正确求助?哪些是违规求助? 4003732
关于积分的说明 12394936
捐赠科研通 3680328
什么是DOI,文献DOI怎么找? 2028598
邀请新用户注册赠送积分活动 1062082
科研通“疑难数据库(出版商)”最低求助积分说明 948086