清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

LDConv: Linear deformable convolution for improving convolutional neural networks

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Xin Zhang,Yingze Song,Tingting Song,Degang Yang,Yichen Ye,Jie Zhou,Liming Zhang
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:149: 105190-105190 被引量:23
标识
DOI:10.1016/j.imavis.2024.105190
摘要

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation is confined to a local window, so it cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k × k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. Although Deformable Convolution (Deformable Conv) address the problem of fixed sampling of standard convolutions, the number of parameters also tends to grow in a squared manner, and Deformable Conv do not explore the effect of different initial sample shapes on network performance. In response to the above questions, the Linear Deformable Convolution (LDConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In LDConv, a novel coordinate generation algorithm is defined to generate different initial sampled positions for convolutional kernels of arbitrary size. To adapt to changing targets, offsets are introduced to adjust the shape of the samples at each position. LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth. Compared to Deformable Conv, LDConv provides richer choices and can be equivalent to deformable convolution when the number of parameters of LDConv is set to the square of K. Differently, this paper also explores the effect of neural networks by using LDConv with the same size and different initial sampling shapes. LDConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampled shapes. Object detection experiments on representative datasets COCO2017, VOC 7 + 12, and VisDrone-DET2021 fully demonstrate the advantages of LDConv. LDConv is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/LDConv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT完成签到,获得积分10
5秒前
传奇3应助asdf采纳,获得10
15秒前
31秒前
naczx完成签到,获得积分0
45秒前
1分钟前
1分钟前
asdf发布了新的文献求助10
1分钟前
Hello应助hongtao采纳,获得10
2分钟前
我是老大应助yumieer采纳,获得10
2分钟前
2分钟前
yumieer发布了新的文献求助10
2分钟前
yumieer完成签到,获得积分20
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
游鱼完成签到,获得积分10
3分钟前
研友_8y2G0L完成签到,获得积分10
3分钟前
3分钟前
方白秋完成签到,获得积分10
4分钟前
4分钟前
shaonianzu完成签到 ,获得积分10
5分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
欢喜的跳跳糖完成签到 ,获得积分10
5分钟前
郭德久完成签到 ,获得积分0
6分钟前
成就的绮南完成签到 ,获得积分20
6分钟前
6分钟前
7分钟前
菠萝包完成签到 ,获得积分10
7分钟前
byyyy完成签到,获得积分10
7分钟前
GingerF应助科研通管家采纳,获得30
7分钟前
共享精神应助科研通管家采纳,获得10
7分钟前
wang5945完成签到 ,获得积分10
8分钟前
Ji完成签到,获得积分10
8分钟前
8分钟前
8分钟前
hongtao发布了新的文献求助10
8分钟前
8分钟前
领导范儿应助夕阳醉了采纳,获得10
8分钟前
洁白的故人完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229