An advanced hybrid deep learning model for accurate energy load prediction in smart building

计算机科学 能源消耗 变压器 人工智能 深度学习 卷积神经网络 人工神经网络 均方误差 残余物 高效能源利用 机器学习 数据挖掘 电压 算法 工程类 统计 数学 电气工程
作者
R. Sunder,R Sreeraj,Vince Paul,Sanjeev Kumar Punia,Bhagavan Konduri,Khan Vajid Nabilal,Umesh Kumar Lilhore,Tarun Kumar Lohani,Ehab Ghith,Mehdi Tlija
出处
期刊:Energy Exploration & Exploitation [SAGE]
卷期号:42 (6): 2241-2269 被引量:1
标识
DOI:10.1177/01445987241267822
摘要

In smart cities, sustainable development depends on energy load prediction since it directs utilities in effectively planning, distributing and generating energy. This work presents a novel hybrid deep learning model including components of the Improved-convolutional neural network (CNN), bidirectional long short-term memory (Bi-LSTM), Graph neural network (GNN), Transformer and Fusion Layer architectures for precise energy load forecasting. Better feature extraction results from the Improved-CNN's dilated convolution and residual block accommodation of wide receptive fields reduced the vanishing gradient problem. By capturing temporal links in both directions, Bi-LSTM networks help to better grasp complicated energy use patterns. Graph neural networks improve predictive capacities across linked systems by characterizing the spatial relationships between energy-consuming units in smart cities. Emphasizing critical trends to guarantee reliable forecasts, transformer models use attention methods to manage long-term dependencies in energy consumption data. Combining CNN, Bi-LSTM, Transformer and GNN component predictions in a Fusion Layer synthesizes numerous data representations to increase accuracy. With Root Mean Square Error of 5.7532 Wh, Mean Absolute Percentage Error of 3.5001%, Mean Absolute Error of 6.7532 Wh and R 2 of 0.9701, the hybrid model fared better than other models on the ‘Electric Power Consumption’ Kaggle dataset. This work develops a realistic model that helps informed decision-making and enhances energy efficiency techniques, promoting energy load forecasting in smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助BaekHyun采纳,获得10
1秒前
peng发布了新的文献求助10
1秒前
1秒前
2秒前
科研通AI5应助孔小白采纳,获得10
3秒前
3秒前
舒适逊完成签到 ,获得积分10
3秒前
科研通AI5应助11111采纳,获得10
4秒前
CipherSage应助hxn采纳,获得10
4秒前
6秒前
深情安青应助shatang采纳,获得10
6秒前
zxx5012发布了新的文献求助10
6秒前
芥丶子完成签到,获得积分10
7秒前
曾开心完成签到,获得积分10
7秒前
平淡南霜发布了新的文献求助10
7秒前
Blue_Pig发布了新的文献求助10
8秒前
李健的小迷弟应助逐风采纳,获得30
8秒前
yatou5651发布了新的文献求助10
9秒前
Akim应助和谐乌龟采纳,获得10
9秒前
peng完成签到,获得积分20
10秒前
CipherSage应助汉关采纳,获得10
10秒前
11秒前
11秒前
11秒前
丘比特应助XM采纳,获得10
11秒前
bkagyin应助Blue_Pig采纳,获得10
12秒前
13秒前
14秒前
14秒前
完美世界应助加油加油采纳,获得10
15秒前
15秒前
16秒前
ns发布了新的文献求助30
18秒前
11111发布了新的文献求助10
18秒前
19秒前
药学牛马完成签到,获得积分10
19秒前
张zi发布了新的文献求助10
20秒前
yatou5651发布了新的文献求助10
21秒前
21秒前
小魏不学无术完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808