Revisiting Nonlocal Self-Similarity from Continuous Representation

人工智能 代表(政治) 自相似性 计算机科学 相似性(几何) 自我表征 模式识别(心理学) 数学 图像(数学) 几何学 政治 政治学 法学 哲学 人文学科
作者
Yisi Luo,Xi-Le Zhao,Deyu Meng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:1
标识
DOI:10.1109/tpami.2024.3464875
摘要

Nonlocal self-similarity (NSS) is an important prior that has been successfully applied in multi-dimensional data processing tasks, e.g., image and video recovery. However, existing NSS-based methods are solely suitable for meshgrid data such as images and videos, but are not suitable for emerging off-meshgrid data, e.g., point cloud and weather data. In this work, we revisit the NSS from the continuous representation perspective and propose a novel Continuous Representation-based NonLocal method (termed as CRNL), which has two innovative features as compared with classical nonlocal methods. First, based on the continuous representation, our CRNL unifies the measure of self-similarity for on-meshgrid and off-meshgrid data and thus is naturally suitable for both of them. Second, the nonlocal continuous groups can be more compactly and efficiently represented by the coupled low-rank function factorization, which simultaneously exploits the similarity within each group and across different groups, while classical nonlocal methods neglect the similarity across groups. This elaborately designed coupled mechanism allows our method to enjoy favorable performance over conventional NSS methods in terms of both effectiveness and efficiency. Extensive multi-dimensional data processing experiments on-meshgrid (e.g., image inpainting and image denoising) and off-meshgrid (e.g., weather data prediction and point cloud recovery) validate the versatility, effectiveness, and efficiency of our CRNL as compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赛猪完成签到,获得积分10
刚刚
彭于晏应助1vvvv采纳,获得10
2秒前
3秒前
科研通AI5应助优势构象采纳,获得10
5秒前
6秒前
6秒前
小李老博关注了科研通微信公众号
7秒前
MING_Q发布了新的文献求助10
8秒前
hqh发布了新的文献求助10
11秒前
领导范儿应助William采纳,获得10
11秒前
shawna关注了科研通微信公众号
11秒前
学有所成关注了科研通微信公众号
16秒前
MING_Q完成签到,获得积分10
18秒前
一方完成签到 ,获得积分10
19秒前
华仔应助hqh采纳,获得10
21秒前
世界第一初恋完成签到,获得积分10
23秒前
文献完成签到,获得积分20
24秒前
可爱的函函应助背书强采纳,获得10
25秒前
遇上就这样吧应助wdb采纳,获得10
29秒前
dandna完成签到 ,获得积分10
31秒前
李爱国应助背书强采纳,获得10
35秒前
FashionBoy应助文献采纳,获得10
37秒前
40秒前
李健的小迷弟应助背书强采纳,获得10
44秒前
优势构象发布了新的文献求助10
46秒前
47秒前
汉堡包应助旺仔同学采纳,获得10
48秒前
大模型应助吱吱采纳,获得10
53秒前
王军鹏发布了新的文献求助10
53秒前
777发布了新的文献求助10
53秒前
azure完成签到,获得积分10
54秒前
zqf发布了新的文献求助10
54秒前
白许四十完成签到,获得积分10
55秒前
nino应助Alimeteors采纳,获得10
56秒前
优势构象完成签到,获得积分10
58秒前
1分钟前
zhzhzh完成签到,获得积分10
1分钟前
1分钟前
zqf完成签到,获得积分20
1分钟前
科研通AI5应助谢香辣采纳,获得10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967