已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Relation Knowledge Distillation by Auxiliary Learning for Object Detection

关系(数据库) 计算机科学 蒸馏 目标检测 人工智能 任务(项目管理) 管道(软件) 对象(语法) 推论 模式识别(心理学) 相关性(法律) 机器学习 数据挖掘 工程类 有机化学 化学 程序设计语言 法学 系统工程 政治学
作者
Hao Wang,Tong Jia,Qilong Wang,Wangmeng Zuo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4796-4810
标识
DOI:10.1109/tip.2024.3445740
摘要

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
宇_发布了新的文献求助10
4秒前
覃玉梅关注了科研通微信公众号
5秒前
于未丰完成签到,获得积分10
6秒前
读书妖精文亭逐完成签到,获得积分10
7秒前
ChenYX发布了新的文献求助10
7秒前
8秒前
anan发布了新的文献求助10
8秒前
zuto吗喽发布了新的文献求助10
8秒前
qi-完成签到,获得积分10
10秒前
10秒前
不爱吃香菜完成签到 ,获得积分10
11秒前
JamesPei应助霸气的瑛采纳,获得10
12秒前
feng关注了科研通微信公众号
13秒前
人1完成签到,获得积分10
13秒前
顺利张发布了新的文献求助10
15秒前
Lamis完成签到 ,获得积分10
17秒前
18秒前
lkr发布了新的文献求助10
18秒前
踏实的酸奶完成签到,获得积分10
18秒前
NexusExplorer应助PUTIDAXIAN采纳,获得10
19秒前
21秒前
orixero应助77seven采纳,获得10
21秒前
22秒前
JuntaoLi发布了新的文献求助10
23秒前
顺利张完成签到,获得积分10
23秒前
super_dai发布了新的文献求助10
24秒前
26秒前
26秒前
31秒前
anan完成签到,获得积分10
31秒前
32秒前
33秒前
Rocc发布了新的文献求助10
35秒前
桃桃发布了新的文献求助10
36秒前
可乐完成签到,获得积分10
36秒前
77seven发布了新的文献求助10
39秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229357
求助须知:如何正确求助?哪些是违规求助? 2877059
关于积分的说明 8197722
捐赠科研通 2544406
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749