Relation Knowledge Distillation by Auxiliary Learning for Object Detection

关系(数据库) 计算机科学 蒸馏 目标检测 人工智能 任务(项目管理) 管道(软件) 对象(语法) 推论 模式识别(心理学) 相关性(法律) 机器学习 数据挖掘 工程类 化学 有机化学 系统工程 法学 政治学 程序设计语言
作者
Hao Wang,Tong Jia,Qilong Wang,Wangmeng Zuo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4796-4810
标识
DOI:10.1109/tip.2024.3445740
摘要

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的天奇完成签到 ,获得积分10
刚刚
嘟嘟完成签到 ,获得积分10
刚刚
chang完成签到 ,获得积分10
1秒前
zrrr完成签到 ,获得积分10
2秒前
lsl应助唐泽雪穗采纳,获得40
2秒前
2秒前
nancy_liang完成签到 ,获得积分10
3秒前
务实海豚完成签到,获得积分10
4秒前
wanghuan完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
夏晴晴完成签到 ,获得积分10
7秒前
liujianxin完成签到,获得积分20
7秒前
yuancw完成签到 ,获得积分10
8秒前
yt完成签到,获得积分10
9秒前
想不出昵称完成签到,获得积分10
11秒前
11秒前
12秒前
东东完成签到,获得积分10
12秒前
Jasper应助猪猪hero采纳,获得10
12秒前
优美的明辉完成签到 ,获得积分10
13秒前
ly普鲁卡因完成签到,获得积分10
14秒前
lbx完成签到,获得积分10
15秒前
尘_完成签到,获得积分10
15秒前
梁小氓完成签到 ,获得积分10
15秒前
djdh完成签到 ,获得积分10
16秒前
Haley完成签到,获得积分10
16秒前
诚心初晴完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
没写名字233完成签到 ,获得积分10
18秒前
19秒前
唐泽雪穗发布了新的文献求助40
19秒前
九天完成签到 ,获得积分0
20秒前
20秒前
yellow完成签到,获得积分10
20秒前
123完成签到 ,获得积分10
21秒前
科研通AI6应助猪猪hero采纳,获得10
22秒前
22秒前
小欢完成签到,获得积分10
23秒前
muxc完成签到,获得积分10
24秒前
学业顺利完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066890
求助须知:如何正确求助?哪些是违规求助? 4288788
关于积分的说明 13360535
捐赠科研通 4108184
什么是DOI,文献DOI怎么找? 2249564
邀请新用户注册赠送积分活动 1255029
关于科研通互助平台的介绍 1187492