Relation Knowledge Distillation by Auxiliary Learning for Object Detection

关系(数据库) 计算机科学 蒸馏 目标检测 人工智能 任务(项目管理) 管道(软件) 对象(语法) 推论 模式识别(心理学) 相关性(法律) 机器学习 数据挖掘 工程类 化学 有机化学 系统工程 法学 政治学 程序设计语言
作者
Hao Wang,Tong Jia,Qilong Wang,Wangmeng Zuo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4796-4810
标识
DOI:10.1109/tip.2024.3445740
摘要

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容荠发布了新的文献求助10
1秒前
君君发布了新的文献求助10
1秒前
LL完成签到,获得积分10
2秒前
2秒前
俊秀的芫发布了新的文献求助10
5秒前
浮游应助Gaowenjie采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
可可果完成签到,获得积分10
10秒前
Stella发布了新的文献求助10
13秒前
许平平发布了新的文献求助10
13秒前
自然馈赠发布了新的文献求助10
14秒前
纯真的金针菇完成签到,获得积分10
14秒前
Eyrie2001发布了新的文献求助30
15秒前
南歌子完成签到 ,获得积分10
15秒前
木子完成签到,获得积分10
16秒前
Stella完成签到,获得积分10
18秒前
陈丽敏关注了科研通微信公众号
20秒前
伍六七完成签到,获得积分10
22秒前
纵马山川剑自提完成签到,获得积分10
23秒前
Eyrie2001完成签到,获得积分10
24秒前
25秒前
小豹子完成签到,获得积分20
25秒前
25秒前
25秒前
yaya完成签到 ,获得积分10
27秒前
27秒前
27秒前
牛无施完成签到 ,获得积分10
28秒前
Criminology34应助ZM采纳,获得10
29秒前
Gao发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
纯真如松完成签到,获得积分10
29秒前
Roach完成签到,获得积分10
30秒前
leena完成签到,获得积分20
30秒前
zoe666发布了新的文献求助10
31秒前
123发布了新的文献求助20
32秒前
宋佳完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069715
求助须知:如何正确求助?哪些是违规求助? 4290967
关于积分的说明 13369157
捐赠科研通 4111230
什么是DOI,文献DOI怎么找? 2251352
邀请新用户注册赠送积分活动 1256540
关于科研通互助平台的介绍 1189031