Relation Knowledge Distillation by Auxiliary Learning for Object Detection

关系(数据库) 计算机科学 蒸馏 目标检测 人工智能 任务(项目管理) 管道(软件) 对象(语法) 推论 模式识别(心理学) 相关性(法律) 机器学习 数据挖掘 工程类 化学 有机化学 系统工程 法学 政治学 程序设计语言
作者
Hao Wang,Tong Jia,Qilong Wang,Wangmeng Zuo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4796-4810
标识
DOI:10.1109/tip.2024.3445740
摘要

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁子发布了新的文献求助10
刚刚
刚刚
英姑应助wllllll采纳,获得10
1秒前
JYL发布了新的文献求助10
1秒前
筱xiao完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
张三完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
fireking_sid发布了新的文献求助10
4秒前
小蘑菇应助毛绒绒窝铺采纳,获得10
4秒前
4秒前
桔子完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
wanna发布了新的文献求助10
6秒前
zhou完成签到,获得积分10
6秒前
小文仙丹完成签到,获得积分10
6秒前
7秒前
lihuachi发布了新的文献求助10
7秒前
WJY完成签到,获得积分20
7秒前
8秒前
KYN发布了新的文献求助10
8秒前
8秒前
浮游应助daggeraxe采纳,获得10
8秒前
元宝发布了新的文献求助10
9秒前
zhuliudan关注了科研通微信公众号
9秒前
Blue发布了新的文献求助10
9秒前
9秒前
隐形曼青应助文章必发采纳,获得10
9秒前
lala完成签到,获得积分10
10秒前
天天快乐应助跳跃的太君采纳,获得10
10秒前
11秒前
耙耙柑完成签到 ,获得积分10
11秒前
慕青应助123123采纳,获得10
11秒前
华仔应助ifegiugfieugfig采纳,获得10
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010