Relation Knowledge Distillation by Auxiliary Learning for Object Detection

关系(数据库) 计算机科学 蒸馏 目标检测 人工智能 任务(项目管理) 管道(软件) 对象(语法) 推论 模式识别(心理学) 相关性(法律) 机器学习 数据挖掘 工程类 化学 有机化学 系统工程 法学 政治学 程序设计语言
作者
Hao Wang,Tong Jia,Qilong Wang,Wangmeng Zuo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4796-4810 被引量:3
标识
DOI:10.1109/tip.2024.3445740
摘要

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中国大陆发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
田様应助Xiaowen采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
小不点发布了新的文献求助30
5秒前
十分喜欢发布了新的文献求助30
6秒前
国色不染尘完成签到,获得积分10
6秒前
风趣手链发布了新的文献求助10
7秒前
7秒前
sci发布了新的文献求助10
8秒前
科研通AI2S应助中国大陆采纳,获得10
9秒前
猫的淡淡完成签到,获得积分10
10秒前
小小应助Exc采纳,获得30
11秒前
LZH发布了新的文献求助10
14秒前
14秒前
Owen应助小张采纳,获得10
15秒前
16秒前
吃肉璇璇发布了新的文献求助100
16秒前
帅气善斓应助十分喜欢采纳,获得10
17秒前
Criminology34应助昭昭采纳,获得30
18秒前
20秒前
欢欢完成签到 ,获得积分10
20秒前
车访枫完成签到 ,获得积分10
20秒前
云洲完成签到,获得积分10
21秒前
科研通AI6应助小不点采纳,获得10
21秒前
23秒前
23秒前
24秒前
灰灰完成签到,获得积分10
24秒前
CipherSage应助唉科研采纳,获得10
25秒前
期许与秋发布了新的文献求助10
26秒前
zmjjkk发布了新的文献求助10
26秒前
28秒前
29秒前
乆乆乆乆发布了新的文献求助10
29秒前
zzz完成签到,获得积分10
29秒前
万能图书馆应助LZH采纳,获得10
31秒前
八百标兵奔北坡完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598857
求助须知:如何正确求助?哪些是违规求助? 4684254
关于积分的说明 14834399
捐赠科研通 4665126
什么是DOI,文献DOI怎么找? 2537490
邀请新用户注册赠送积分活动 1504943
关于科研通互助平台的介绍 1470655