Relation Knowledge Distillation by Auxiliary Learning for Object Detection

关系(数据库) 计算机科学 蒸馏 目标检测 人工智能 任务(项目管理) 管道(软件) 对象(语法) 推论 模式识别(心理学) 相关性(法律) 机器学习 数据挖掘 工程类 化学 有机化学 系统工程 法学 政治学 程序设计语言
作者
Hao Wang,Tong Jia,Qilong Wang,Wangmeng Zuo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4796-4810 被引量:3
标识
DOI:10.1109/tip.2024.3445740
摘要

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rwq完成签到 ,获得积分10
1秒前
1秒前
苻安筠发布了新的文献求助30
1秒前
2秒前
吕小软发布了新的文献求助10
2秒前
麻先生关注了科研通微信公众号
2秒前
2秒前
2秒前
大个应助Shinewei采纳,获得30
2秒前
淡然的剑通完成签到 ,获得积分10
3秒前
3秒前
3秒前
qaq发布了新的文献求助10
3秒前
4秒前
悦耳扬发布了新的文献求助10
4秒前
4秒前
shan完成签到,获得积分10
4秒前
dzc完成签到,获得积分10
5秒前
YYYang完成签到,获得积分10
5秒前
是漏漏呀完成签到,获得积分10
5秒前
JIECHENG完成签到 ,获得积分10
5秒前
Julie发布了新的文献求助10
5秒前
江海客完成签到,获得积分10
6秒前
帕尼尼发布了新的文献求助10
6秒前
7秒前
ho应助鲨鱼娃采纳,获得30
7秒前
7秒前
7秒前
回复对方发布了新的文献求助10
7秒前
李健应助杨老板采纳,获得10
7秒前
Mcintosh完成签到 ,获得积分10
7秒前
fmh发布了新的文献求助10
8秒前
8秒前
tdtk发布了新的文献求助10
8秒前
LiuSD发布了新的文献求助10
8秒前
syl完成签到 ,获得积分10
8秒前
奋斗的凡发布了新的文献求助10
9秒前
10秒前
10秒前
ixueyi完成签到,获得积分10
10秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388804
求助须知:如何正确求助?哪些是违规求助? 4511068
关于积分的说明 14037587
捐赠科研通 4421835
什么是DOI,文献DOI怎么找? 2428954
邀请新用户注册赠送积分活动 1421511
关于科研通互助平台的介绍 1400661