Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective

透视图(图形) 计算机科学 路径(计算) 人工智能 人机交互 计算机网络
作者
Haotian Zhang,Shuanghong Shen,Bihan Xu,Zhenya Huang,Jinze Wu,Jing Sha,Shijin Wang
标识
DOI:10.1145/3637528.3671947
摘要

Learning path recommendation aims to provide learners with a reasonable order of items to achieve their learning goals. Intuitively, the learning process on the learning path can be metaphorically likened to walking. Despite extensive efforts in this area, most previous methods mainly focus on the relationship among items but overlook the difficulty of items, which may raise two issues from a real walking perspective: (1) The path may be rough: When learners tread the path without considering item difficulty, it's akin to walking a dark, uneven road, making learning harder and dampening interest. (2) The path may be inefficient: Allowing learners only a few attempts on very challenging items before switching, or persisting with a difficult item despite numerous attempts without mastery, can result in inefficiencies in the learning journey. To conquer the above limitations, we propose a novel method named Difficulty-constrained Learning Path Recommendation (DLPR), which is aware of item difficulty. Specifically, we first explicitly categorize items into learning items and practice items, then construct a hierarchical graph to model and leverage item difficulty adequately. Then we design a Difficulty-driven Hierarchical Reinforcement Learning (DHRL) framework to facilitate learning paths with efficiency and smoothness. Finally, extensive experiments on three different simulators demonstrate our framework achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ky发布了新的文献求助10
1秒前
Suyi发布了新的文献求助10
1秒前
英俊的铭应助fuck采纳,获得10
1秒前
2秒前
JiangY完成签到,获得积分10
2秒前
大个应助Yjj采纳,获得10
2秒前
曹俊皓发布了新的文献求助10
3秒前
3秒前
3秒前
怦然心动完成签到,获得积分10
4秒前
ban发布了新的文献求助10
4秒前
等待寄云发布了新的文献求助10
4秒前
4秒前
su完成签到,获得积分10
5秒前
泡泡完成签到 ,获得积分10
5秒前
碧蓝初丹发布了新的文献求助10
6秒前
852应助陈石头采纳,获得10
6秒前
7秒前
咕咕完成签到,获得积分10
7秒前
7秒前
8秒前
baiqi发布了新的文献求助10
8秒前
香港发布了新的文献求助10
8秒前
锡昱发布了新的文献求助50
8秒前
不是叶子发布了新的文献求助30
9秒前
9秒前
pp完成签到,获得积分20
9秒前
薰硝壤应助chen采纳,获得10
10秒前
10秒前
安心完成签到,获得积分10
11秒前
wanghe发布了新的文献求助10
11秒前
顾矜应助朴实的绿兰采纳,获得10
11秒前
醋溜企鹅完成签到,获得积分10
12秒前
山野完成签到 ,获得积分10
12秒前
qi发布了新的文献求助10
14秒前
Jessie完成签到,获得积分10
15秒前
15秒前
xiangshan完成签到,获得积分10
15秒前
16秒前
思源应助lingkai采纳,获得10
16秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497