亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid sampling-based RRT* path planning algorithm for autonomous mobile robot navigation

计算机科学 运动规划 移动机器人 人工智能 移动机器人导航 路径(计算) 采样(信号处理) 计算机视觉 机器人 实时计算 机器人控制 计算机网络 滤波器(信号处理)
作者
Sivasankar Ganesan,Balakrishnan Ramalingam,Mohan Rajesh Elara
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:258: 125206-125206 被引量:20
标识
DOI:10.1016/j.eswa.2024.125206
摘要

The path-planning algorithms for autonomous mobile robot navigation are crucial, often relying on sampling-based methods. RRT* is a robust, sampling-based path planning algorithm. The sampling process in RRT* plays a pivotal role, where uniform sampling can lead to slow convergence, while non-uniform sampling offers faster convergence but may struggle in complex environments due to its limited exploration. Thus, achieving a balance between exploitation and exploration is essential when selecting the sampling method for the RRT* path-planning algorithm. To address this issue, this research paper introduces Hybrid-RRT*, a path planning method that utilizes hybrid sampling. This unique approach generates samples using both non-uniform and uniform samplers. Hybrid-RRT* is evaluated against three baseline path planning algorithms—RRT*-N, Informed RRT*, and RRT*—across three different 384x384 2D simulation environments. Compared to these baseline methods, Hybrid-RRT* achieves superior results across all five performance metrics: convergence rate, success rate, number of nodes visited, path length, and planning time. According to the numerical results, the proposed algorithm achieves a faster average convergence rate that is 76.14% higher than RRT*, 24% higher than Informed RRT*, and 3.33% higher than RRT*-N. Moreover, it reduces node exploration by an average of 48.53% compared to RRT* and 40.83% compared to Informed RRT*. The simulation results demonstrate that the proposed Hybrid-RRT* algorithm effectively addresses the issue of slow convergence with uniform sampling and the challenge of limited exploration with non-uniform sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研小菜鸡采纳,获得10
3秒前
8秒前
彼岸花开发布了新的文献求助200
9秒前
huahuao发布了新的文献求助10
14秒前
AMENG完成签到,获得积分10
27秒前
huahuao完成签到,获得积分10
27秒前
俭朴蜜蜂完成签到 ,获得积分10
28秒前
34秒前
SCI完成签到,获得积分10
38秒前
58秒前
李爱国应助科研通管家采纳,获得10
59秒前
大个应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
1分钟前
北方完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
张土豆完成签到 ,获得积分10
2分钟前
科研小菜鸡完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
蝈蝈完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
禹山河发布了新的文献求助10
3分钟前
李健的小迷弟应助禹山河采纳,获得10
4分钟前
lmplzzp完成签到,获得积分10
4分钟前
4分钟前
nicolaslcq完成签到,获得积分0
4分钟前
LU发布了新的文献求助30
4分钟前
4分钟前
闪闪完成签到 ,获得积分10
4分钟前
LU完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960091
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069