A hybrid sampling-based RRT* path planning algorithm for autonomous mobile robot navigation

计算机科学 运动规划 移动机器人 人工智能 移动机器人导航 路径(计算) 采样(信号处理) 计算机视觉 机器人 实时计算 机器人控制 计算机网络 滤波器(信号处理)
作者
Sivasankar Ganesan,Balakrishnan Ramalingam,Mohan Rajesh Elara
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:258: 125206-125206 被引量:53
标识
DOI:10.1016/j.eswa.2024.125206
摘要

The path-planning algorithms for autonomous mobile robot navigation are crucial, often relying on sampling-based methods. RRT* is a robust, sampling-based path planning algorithm. The sampling process in RRT* plays a pivotal role, where uniform sampling can lead to slow convergence, while non-uniform sampling offers faster convergence but may struggle in complex environments due to its limited exploration. Thus, achieving a balance between exploitation and exploration is essential when selecting the sampling method for the RRT* path-planning algorithm. To address this issue, this research paper introduces Hybrid-RRT*, a path planning method that utilizes hybrid sampling. This unique approach generates samples using both non-uniform and uniform samplers. Hybrid-RRT* is evaluated against three baseline path planning algorithms—RRT*-N, Informed RRT*, and RRT*—across three different 384x384 2D simulation environments. Compared to these baseline methods, Hybrid-RRT* achieves superior results across all five performance metrics: convergence rate, success rate, number of nodes visited, path length, and planning time. According to the numerical results, the proposed algorithm achieves a faster average convergence rate that is 76.14% higher than RRT*, 24% higher than Informed RRT*, and 3.33% higher than RRT*-N. Moreover, it reduces node exploration by an average of 48.53% compared to RRT* and 40.83% compared to Informed RRT*. The simulation results demonstrate that the proposed Hybrid-RRT* algorithm effectively addresses the issue of slow convergence with uniform sampling and the challenge of limited exploration with non-uniform sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助花花采纳,获得10
1秒前
1秒前
1秒前
xinchaoma发布了新的文献求助10
2秒前
2秒前
害人精x完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI6应助小陈同学采纳,获得10
3秒前
Xylo完成签到,获得积分10
3秒前
勤快的树懒完成签到,获得积分10
3秒前
wang完成签到,获得积分10
4秒前
细心觅风发布了新的文献求助10
4秒前
周南完成签到,获得积分10
4秒前
liweb完成签到,获得积分10
4秒前
Magic麦完成签到,获得积分10
4秒前
5秒前
5秒前
mochen发布了新的文献求助10
5秒前
addd发布了新的文献求助10
6秒前
6秒前
传奇3应助廖智勇采纳,获得10
6秒前
7秒前
sharkmelon应助文献小当家采纳,获得10
7秒前
mingshi发布了新的文献求助10
7秒前
8秒前
细心觅风完成签到,获得积分10
8秒前
knight完成签到,获得积分10
8秒前
9秒前
小刘刘完成签到,获得积分10
9秒前
务实水池发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
charih发布了新的文献求助10
10秒前
10秒前
11秒前
善学以致用应助细心觅风采纳,获得10
11秒前
充电宝应助张志超采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764