From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning

计算机科学 物理
作者
Juan Diego Toscano,Vivek Oommen,Alan John Varghese,Zongren Zou,Nazanin Ahmadi Daryakenari,Chenxi Wu,George Em Karniadakis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.13228
摘要

Physics-Informed Neural Networks (PINNs) have emerged as a key tool in Scientific Machine Learning since their introduction in 2017, enabling the efficient solution of ordinary and partial differential equations using sparse measurements. Over the past few years, significant advancements have been made in the training and optimization of PINNs, covering aspects such as network architectures, adaptive refinement, domain decomposition, and the use of adaptive weights and activation functions. A notable recent development is the Physics-Informed Kolmogorov-Arnold Networks (PIKANS), which leverage a representation model originally proposed by Kolmogorov in 1957, offering a promising alternative to traditional PINNs. In this review, we provide a comprehensive overview of the latest advancements in PINNs, focusing on improvements in network design, feature expansion, optimization techniques, uncertainty quantification, and theoretical insights. We also survey key applications across a range of fields, including biomedicine, fluid and solid mechanics, geophysics, dynamical systems, heat transfer, chemical engineering, and beyond. Finally, we review computational frameworks and software tools developed by both academia and industry to support PINN research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
栗栗子完成签到,获得积分10
刚刚
友好的以旋完成签到 ,获得积分10
1秒前
1秒前
1秒前
xss发布了新的文献求助20
2秒前
2秒前
2秒前
PPD发布了新的文献求助10
3秒前
Stanley完成签到,获得积分20
3秒前
索隆完成签到,获得积分10
3秒前
卡卡584完成签到,获得积分10
3秒前
kuyng发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
cxxwins发布了新的文献求助10
4秒前
小马甲应助SHIKI采纳,获得10
5秒前
5秒前
桐桐应助Fiee采纳,获得10
5秒前
6秒前
gaozengxiang发布了新的文献求助10
7秒前
jacob258发布了新的文献求助10
7秒前
顾顾发布了新的文献求助10
7秒前
豆芽关注了科研通微信公众号
7秒前
8秒前
刘晓丹发布了新的文献求助10
8秒前
李发行完成签到,获得积分10
8秒前
9秒前
春儿发布了新的文献求助10
9秒前
后知不觉完成签到,获得积分10
9秒前
10秒前
微笑完成签到,获得积分10
10秒前
10秒前
向前完成签到,获得积分10
11秒前
搬砖美少女完成签到,获得积分10
11秒前
科研通AI5应助yang采纳,获得10
11秒前
满意外套完成签到,获得积分10
12秒前
qwa完成签到 ,获得积分20
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482