From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning

计算机科学 物理
作者
Juan Diego Toscano,Vivek Oommen,Alan John Varghese,Zongren Zou,Nazanin Ahmadi Daryakenari,Chenxi Wu,George Em Karniadakis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.13228
摘要

Physics-Informed Neural Networks (PINNs) have emerged as a key tool in Scientific Machine Learning since their introduction in 2017, enabling the efficient solution of ordinary and partial differential equations using sparse measurements. Over the past few years, significant advancements have been made in the training and optimization of PINNs, covering aspects such as network architectures, adaptive refinement, domain decomposition, and the use of adaptive weights and activation functions. A notable recent development is the Physics-Informed Kolmogorov-Arnold Networks (PIKANS), which leverage a representation model originally proposed by Kolmogorov in 1957, offering a promising alternative to traditional PINNs. In this review, we provide a comprehensive overview of the latest advancements in PINNs, focusing on improvements in network design, feature expansion, optimization techniques, uncertainty quantification, and theoretical insights. We also survey key applications across a range of fields, including biomedicine, fluid and solid mechanics, geophysics, dynamical systems, heat transfer, chemical engineering, and beyond. Finally, we review computational frameworks and software tools developed by both academia and industry to support PINN research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助予秋采纳,获得10
刚刚
刚刚
刘欣完成签到,获得积分10
1秒前
Lvhao应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
体贴问丝完成签到 ,获得积分10
3秒前
hochorsin发布了新的文献求助10
4秒前
xcydd发布了新的文献求助10
4秒前
大个应助流沙采纳,获得10
5秒前
lc完成签到 ,获得积分10
5秒前
mark发布了新的文献求助10
8秒前
泽锦臻完成签到 ,获得积分10
8秒前
陈陈完成签到 ,获得积分10
8秒前
13秒前
mark完成签到,获得积分10
15秒前
believe完成签到,获得积分10
15秒前
香菜完成签到,获得积分10
16秒前
透明人完成签到,获得积分10
16秒前
17秒前
an发布了新的文献求助10
18秒前
yy给yy的求助进行了留言
19秒前
Owen应助fuchao采纳,获得10
19秒前
19秒前
ProfWang完成签到,获得积分10
20秒前
羊白玉发布了新的文献求助40
20秒前
lx123abc发布了新的文献求助10
22秒前
xzy998应助源老头采纳,获得10
24秒前
25秒前
26秒前
27秒前
天天快乐应助小杨采纳,获得10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187