From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning

计算机科学 物理
作者
Juan Diego Toscano,Vivek Oommen,Alan John Varghese,Zongren Zou,Nazanin Ahmadi Daryakenari,Chenxi Wu,George Em Karniadakis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.13228
摘要

Physics-Informed Neural Networks (PINNs) have emerged as a key tool in Scientific Machine Learning since their introduction in 2017, enabling the efficient solution of ordinary and partial differential equations using sparse measurements. Over the past few years, significant advancements have been made in the training and optimization of PINNs, covering aspects such as network architectures, adaptive refinement, domain decomposition, and the use of adaptive weights and activation functions. A notable recent development is the Physics-Informed Kolmogorov-Arnold Networks (PIKANS), which leverage a representation model originally proposed by Kolmogorov in 1957, offering a promising alternative to traditional PINNs. In this review, we provide a comprehensive overview of the latest advancements in PINNs, focusing on improvements in network design, feature expansion, optimization techniques, uncertainty quantification, and theoretical insights. We also survey key applications across a range of fields, including biomedicine, fluid and solid mechanics, geophysics, dynamical systems, heat transfer, chemical engineering, and beyond. Finally, we review computational frameworks and software tools developed by both academia and industry to support PINN research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳能之子完成签到,获得积分10
1秒前
易安发布了新的文献求助10
1秒前
1秒前
1秒前
留胡子的藏鸟完成签到,获得积分10
2秒前
赘婿应助Jemry采纳,获得10
3秒前
stars完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
7秒前
7秒前
研友_rLmNXn发布了新的文献求助10
9秒前
9秒前
赘婿应助神勇的梦凡采纳,获得10
9秒前
CodeCraft应助聪明紫山采纳,获得10
10秒前
qcf发布了新的文献求助10
11秒前
SYLH应助xinxin采纳,获得20
11秒前
1111发布了新的文献求助10
11秒前
11秒前
iieao完成签到,获得积分20
11秒前
烨坤完成签到 ,获得积分10
11秒前
子璇发布了新的文献求助10
12秒前
霸气大米完成签到,获得积分10
12秒前
早睡早起完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
共享精神应助研友_rLmNXn采纳,获得10
16秒前
搞怪世德应助研友_rLmNXn采纳,获得10
16秒前
16秒前
李健应助研友_rLmNXn采纳,获得10
16秒前
搜集达人应助超级盼海采纳,获得10
16秒前
SYLH应助沉静的安青采纳,获得10
17秒前
18秒前
呆瓜完成签到,获得积分10
18秒前
19秒前
Owen应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214