亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning

计算机科学 物理
作者
Juan Diego Toscano,Vivek Oommen,Alan John Varghese,Zongren Zou,Nazanin Ahmadi Daryakenari,Chenxi Wu,George Em Karniadakis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.13228
摘要

Physics-Informed Neural Networks (PINNs) have emerged as a key tool in Scientific Machine Learning since their introduction in 2017, enabling the efficient solution of ordinary and partial differential equations using sparse measurements. Over the past few years, significant advancements have been made in the training and optimization of PINNs, covering aspects such as network architectures, adaptive refinement, domain decomposition, and the use of adaptive weights and activation functions. A notable recent development is the Physics-Informed Kolmogorov-Arnold Networks (PIKANS), which leverage a representation model originally proposed by Kolmogorov in 1957, offering a promising alternative to traditional PINNs. In this review, we provide a comprehensive overview of the latest advancements in PINNs, focusing on improvements in network design, feature expansion, optimization techniques, uncertainty quantification, and theoretical insights. We also survey key applications across a range of fields, including biomedicine, fluid and solid mechanics, geophysics, dynamical systems, heat transfer, chemical engineering, and beyond. Finally, we review computational frameworks and software tools developed by both academia and industry to support PINN research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wgxwgx采纳,获得10
4秒前
13秒前
wgxwgx发布了新的文献求助10
17秒前
wgxwgx完成签到,获得积分10
27秒前
9527应助科研通管家采纳,获得10
31秒前
36秒前
石石夏发布了新的文献求助10
40秒前
磐石完成签到,获得积分10
45秒前
充电宝应助蒂芬妮采纳,获得10
1分钟前
1分钟前
1分钟前
醉熏的幼珊完成签到,获得积分10
2分钟前
Shicheng完成签到,获得积分10
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
9527应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得30
2分钟前
2分钟前
予秋发布了新的文献求助10
2分钟前
十分十分佳完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
天天快乐应助要减肥中蓝采纳,获得10
3分钟前
淡然绝山发布了新的文献求助10
3分钟前
sho完成签到,获得积分10
3分钟前
淡然绝山完成签到,获得积分10
3分钟前
丘比特应助ukz37752采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
Jasper应助归海浩阑采纳,获得10
4分钟前
Gryff完成签到 ,获得积分10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
归海浩阑完成签到,获得积分10
4分钟前
完美世界应助wuuw采纳,获得30
5分钟前
5分钟前
5分钟前
wuuw发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065350
求助须知:如何正确求助?哪些是违规求助? 4287952
关于积分的说明 13359526
捐赠科研通 4106731
什么是DOI,文献DOI怎么找? 2248808
邀请新用户注册赠送积分活动 1254327
关于科研通互助平台的介绍 1185998