A hybrid 3D-printed and electrospun bilayer pharmaceutical membrane based on polycaprolactone/chitosan/polyvinyl alcohol for wound healing applications
Skin injuries resulting from physical trauma pose significant health risks, necessitating advanced wound care solutions. This investigation introduces an innovative bilayer wound dressing composed of 3D-printed propolis-coated polycaprolactone (PCL/PP) and an electrospun composite of polyvinyl alcohol, chitosan, polycaprolactone, and diltiazem (PVA/CTS/PCL/DTZ). SEM analysis revealed a bilayer structure with 89.23 ± 51.47 % porosity and uniformly distributed nanofibers. The scaffold tensile strength, with pore sizes of 100, 300, and 500 μm, was comparable to native skin. However, smaller pore sizes reduced water vapor transmission from 4211.59 ± 168.53 to 2358.49 ± 203.63 g/m