Camellia oleifera trunks detection and identification based on improved YOLOv7

油茶 计算机科学 鉴定(生物学) 山茶花 人工智能 模式识别(心理学) 植物 生物 计算机安全
作者
Haorui Wang,Yang Liu,Hong Luo,Yuanyin Luo,Yuyan Zhang,Fei Long,Lijun Li
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (27)
标识
DOI:10.1002/cpe.8265
摘要

Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋芝璇完成签到,获得积分10
刚刚
刚刚
刚刚
搜集达人应助坚强莺采纳,获得10
2秒前
充电宝应助xxx采纳,获得10
2秒前
4秒前
砂锅粥发布了新的文献求助10
4秒前
刘亚茹发布了新的文献求助10
5秒前
5秒前
Yuan应助一个晴天采纳,获得10
7秒前
dou完成签到,获得积分10
7秒前
顾矜应助热心市民小红花采纳,获得10
8秒前
科研通AI2S应助莫若舞采纳,获得10
9秒前
11秒前
Thing完成签到,获得积分10
11秒前
刘亚茹完成签到,获得积分10
12秒前
13秒前
肃清夏安完成签到,获得积分10
13秒前
梨子完成签到,获得积分10
15秒前
懵懂的愫完成签到 ,获得积分10
16秒前
瑾昭完成签到,获得积分10
16秒前
花鸟风月evereo完成签到,获得积分10
16秒前
南庭完成签到,获得积分10
16秒前
16秒前
隐形曼青应助砂锅粥采纳,获得10
17秒前
CodeCraft应助阳光的伊采纳,获得10
18秒前
20秒前
xxx发布了新的文献求助10
20秒前
张八完成签到 ,获得积分10
23秒前
路宝发布了新的文献求助10
24秒前
xmhxpz发布了新的文献求助10
24秒前
25秒前
Lshyong完成签到 ,获得积分10
26秒前
27秒前
典雅雅旋发布了新的文献求助10
27秒前
解惑完成签到,获得积分20
28秒前
28秒前
酷波er应助diiiho采纳,获得10
29秒前
烂漫以柳关注了科研通微信公众号
29秒前
陈思完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115