Camellia oleifera trunks detection and identification based on improved YOLOv7

油茶 计算机科学 鉴定(生物学) 山茶花 人工智能 模式识别(心理学) 植物 生物 计算机安全
作者
Haorui Wang,Yang Liu,Hong Luo,Yuanyin Luo,Yuyan Zhang,Fei Long,Lijun Li
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (27)
标识
DOI:10.1002/cpe.8265
摘要

Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助海阔光明采纳,获得10
1秒前
荆玉豪完成签到,获得积分10
1秒前
思源应助yyy采纳,获得10
5秒前
香蕉觅云应助彤彤采纳,获得10
5秒前
haozi发布了新的文献求助10
5秒前
realtimes完成签到,获得积分10
6秒前
yufey完成签到 ,获得积分10
6秒前
6秒前
mmyhn发布了新的文献求助20
8秒前
有信心完成签到 ,获得积分10
9秒前
微笑的水桃完成签到 ,获得积分10
10秒前
pK完成签到 ,获得积分10
10秒前
小邓发布了新的文献求助10
11秒前
11秒前
勤奋的盼山完成签到 ,获得积分10
13秒前
Jameszhuo完成签到 ,获得积分10
13秒前
13秒前
14秒前
16秒前
研友_VZG7GZ应助青青采纳,获得10
16秒前
16秒前
淡然葶完成签到 ,获得积分10
17秒前
寻星子发布了新的文献求助10
18秒前
小邓完成签到,获得积分10
19秒前
ccm应助1256采纳,获得10
19秒前
kangaroo完成签到 ,获得积分10
19秒前
水濑心源完成签到,获得积分10
20秒前
尊敬的语薇完成签到,获得积分10
20秒前
嗯嗯发布了新的文献求助10
21秒前
21秒前
23秒前
23秒前
生鱼安乐完成签到,获得积分10
24秒前
喜悦一德发布了新的文献求助10
26秒前
笑ige完成签到,获得积分10
28秒前
嗯嗯完成签到,获得积分10
29秒前
mhm完成签到 ,获得积分10
31秒前
那时花开应助dulu采纳,获得10
33秒前
大模型应助蝈蝈采纳,获得10
34秒前
慕青应助陶军辉采纳,获得10
35秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380088
求助须知:如何正确求助?哪些是违规求助? 4504158
关于积分的说明 14017420
捐赠科研通 4413027
什么是DOI,文献DOI怎么找? 2424054
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394628