亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Camellia oleifera trunks detection and identification based on improved YOLOv7

油茶 计算机科学 鉴定(生物学) 山茶花 人工智能 模式识别(心理学) 植物 生物 计算机安全
作者
Haorui Wang,Yang Liu,Hong Luo,Yuanyin Luo,Yuyan Zhang,Fei Long,Lijun Li
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (27)
标识
DOI:10.1002/cpe.8265
摘要

Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lanxinge完成签到 ,获得积分10
13秒前
17秒前
cornelialkx发布了新的文献求助10
24秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
32秒前
32秒前
32秒前
32秒前
cornelialkx完成签到,获得积分20
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264