A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age

血液学 内科学 生物钟 生物年龄 老年学 医学 生物 肿瘤科 昼夜节律
作者
Jorge Martínez-Romero,María Emilia Fernández,Michel Bernier,Nathan L. Price,William H. Mueller,Julián Candia,Simonetta Camandola,Osorio Meirelles,Yi‐Han Hu,Chi Kong Li,Nigus G. Asefa,Andrew Deighan,Camila Vieira Ligo Teixeira,Dushani L. Palliyaguru,Carlos Serrano,Nicolas Escobar-Velasquez,Stephanie Dickinson,Eric J. Shiroma,Luigi Ferrucci,Gary A. Churchill
出处
期刊:Nature Aging 被引量:1
标识
DOI:10.1038/s43587-024-00728-7
摘要

Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging. Eight hematological variables and two metabolic indices were collected longitudinally (12,010 observations). Blood age was predicted using a deep neural network. Blood age was significantly correlated with chronological age, and aging gap was positively associated with mortality risk and frailty. Platelets were identified as the strongest age predictor by the deep neural network. An aging clock based on routinely collected blood measures has the potential to provide a practical clinical tool to better understand individual variability in the aging process. The authors used deep learning to derive a biological clock based on routine blood markers in mice that distinguishes slow-aging from fast-aging animals. Drawing on data from the NIH Study of Longitudinal Aging in Mice and a study of aging at The Jackson Laboratory, this clock reveals that platelets are key in predicting biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元白发布了新的文献求助10
刚刚
shineshine发布了新的文献求助10
2秒前
阿德利企鹅完成签到 ,获得积分10
2秒前
2秒前
丘比特应助TianY天翊采纳,获得10
2秒前
dd完成签到,获得积分10
3秒前
3秒前
Lucas应助研友_Z7QedL采纳,获得10
4秒前
4秒前
666发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
爱笑的若雁完成签到,获得积分10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Hiccupsssss完成签到,获得积分10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
6秒前
田田应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
chenqiumu应助zzzshy采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
852应助高志博采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884