A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age

血液学 内科学 生物钟 生物年龄 老年学 医学 生物 肿瘤科 昼夜节律
作者
Jorge Martínez-Romero,María Emilia Fernández,Michel Bernier,Nathan L. Price,William H. Mueller,Julián Candia,Simonetta Camandola,Osorio Meirelles,Yi‐Han Hu,Chi Kong Li,Nigus Gebremedhin Asefa,Andrew Deighan,Camila Vieira Ligo Teixeira,Dushani L. Palliyaguru,Carlos Serrano,Nicolas Escobar-Velasquez,Stephanie Dickinson,Eric J. Shiroma,Luigi Ferrucci,Gary A. Churchill
出处
期刊:Nature Aging
标识
DOI:10.1038/s43587-024-00728-7
摘要

Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging. Eight hematological variables and two metabolic indices were collected longitudinally (12,010 observations). Blood age was predicted using a deep neural network. Blood age was significantly correlated with chronological age, and aging gap was positively associated with mortality risk and frailty. Platelets were identified as the strongest age predictor by the deep neural network. An aging clock based on routinely collected blood measures has the potential to provide a practical clinical tool to better understand individual variability in the aging process. The authors used deep learning to derive a biological clock based on routine blood markers in mice that distinguishes slow-aging from fast-aging animals. Drawing on data from the NIH Study of Longitudinal Aging in Mice and a study of aging at The Jackson Laboratory, this clock reveals that platelets are key in predicting biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好发布了新的文献求助10
刚刚
2秒前
帅气宛凝二号完成签到,获得积分20
2秒前
2秒前
快乐的凝梦完成签到 ,获得积分10
4秒前
李健应助虚幻的玉米采纳,获得10
4秒前
Accepted发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
Zyk发布了新的文献求助10
7秒前
ge完成签到,获得积分10
7秒前
ppp发布了新的文献求助10
8秒前
花生仁发布了新的文献求助10
8秒前
9秒前
11秒前
蒽en发布了新的文献求助10
11秒前
11秒前
11秒前
xuxu发布了新的文献求助10
11秒前
泡泡完成签到,获得积分10
12秒前
美子完成签到,获得积分10
12秒前
renyun完成签到,获得积分10
14秒前
学术机器1完成签到,获得积分20
14秒前
老鼠爱吃fish完成签到,获得积分10
15秒前
16秒前
我是老大应助ppp采纳,获得10
19秒前
20秒前
桐桐应助文静老三采纳,获得10
21秒前
Jasper应助爱笑的笑蓝采纳,获得10
21秒前
Maomiaomiao关注了科研通微信公众号
21秒前
专注一块砖头完成签到,获得积分10
21秒前
baiyixuan发布了新的文献求助10
23秒前
24秒前
24秒前
jojokin完成签到,获得积分10
25秒前
乐乐应助Rain采纳,获得10
25秒前
zychaos发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749268
求助须知:如何正确求助?哪些是违规求助? 3292508
关于积分的说明 10076921
捐赠科研通 3007951
什么是DOI,文献DOI怎么找? 1651910
邀请新用户注册赠送积分活动 786900
科研通“疑难数据库(出版商)”最低求助积分说明 751906