A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age

血液学 内科学 生物钟 生物年龄 老年学 医学 生物 肿瘤科 昼夜节律
作者
Jorge Martínez-Romero,María Emilia Fernández,Michel Bernier,Nathan L. Price,William H. Mueller,Julián Candia,Simonetta Camandola,Osorio Meirelles,Yi‐Han Hu,Chi Kong Li,Nigus Gebremedhin Asefa,Andrew Deighan,Camila Vieira Ligo Teixeira,Dushani L. Palliyaguru,Carlos Serrano,Nicolas Escobar-Velasquez,Stephanie Dickinson,Eric J. Shiroma,Luigi Ferrucci,Gary A. Churchill
出处
期刊:Nature Aging 卷期号:4 (12): 1882-1896 被引量:4
标识
DOI:10.1038/s43587-024-00728-7
摘要

Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging. Eight hematological variables and two metabolic indices were collected longitudinally (12,010 observations). Blood age was predicted using a deep neural network. Blood age was significantly correlated with chronological age, and aging gap was positively associated with mortality risk and frailty. Platelets were identified as the strongest age predictor by the deep neural network. An aging clock based on routinely collected blood measures has the potential to provide a practical clinical tool to better understand individual variability in the aging process. The authors used deep learning to derive a biological clock based on routine blood markers in mice that distinguishes slow-aging from fast-aging animals. Drawing on data from the NIH Study of Longitudinal Aging in Mice and a study of aging at The Jackson Laboratory, this clock reveals that platelets are key in predicting biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyzdmmm完成签到,获得积分10
刚刚
无花果应助帅气诗槐采纳,获得10
刚刚
果汁橡皮糖完成签到,获得积分10
1秒前
拿拿发布了新的文献求助10
1秒前
核桃发布了新的文献求助10
1秒前
2秒前
小菜鸟发布了新的文献求助10
2秒前
韩豆乐发布了新的文献求助10
2秒前
嗷嗷嗷发布了新的文献求助10
4秒前
4秒前
艾欧勾勾完成签到 ,获得积分10
4秒前
李爱国应助默默的威采纳,获得10
5秒前
BowieHuang应助果汁橡皮糖采纳,获得10
5秒前
BowieHuang应助果汁橡皮糖采纳,获得10
5秒前
大个应助LLL采纳,获得10
5秒前
cjfc发布了新的文献求助10
7秒前
7秒前
andy6680完成签到,获得积分20
8秒前
叶轮机械完成签到,获得积分10
9秒前
领导范儿应助1212采纳,获得20
9秒前
9秒前
电池小白发布了新的文献求助10
10秒前
西因应助不懈奋进采纳,获得10
10秒前
11秒前
帅气诗槐发布了新的文献求助10
13秒前
sugar发布了新的文献求助20
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
why发布了新的文献求助10
17秒前
17秒前
小菜鸟完成签到,获得积分10
18秒前
19秒前
wb发布了新的文献求助10
20秒前
20秒前
李小牛发布了新的文献求助10
21秒前
安静的寒风完成签到,获得积分10
21秒前
华仔应助电池小白采纳,获得10
22秒前
天天快乐应助cs采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602782
求助须知:如何正确求助?哪些是违规求助? 4687876
关于积分的说明 14851686
捐赠科研通 4685453
什么是DOI,文献DOI怎么找? 2540122
邀请新用户注册赠送积分活动 1506835
关于科研通互助平台的介绍 1471450