A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age

血液学 内科学 生物钟 生物年龄 老年学 医学 生物 肿瘤科 昼夜节律
作者
Jorge Martínez-Romero,María Emilia Fernández,Michel Bernier,Nathan L. Price,William H. Mueller,Julián Candia,Simonetta Camandola,Osorio Meirelles,Yi‐Han Hu,Chi Kong Li,Nigus Gebremedhin Asefa,Andrew Deighan,Camila Vieira Ligo Teixeira,Dushani L. Palliyaguru,Carlos Serrano,Nicolas Escobar-Velasquez,Stephanie Dickinson,Eric J. Shiroma,Luigi Ferrucci,Gary A. Churchill
出处
期刊:Nature Aging
标识
DOI:10.1038/s43587-024-00728-7
摘要

Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging. Eight hematological variables and two metabolic indices were collected longitudinally (12,010 observations). Blood age was predicted using a deep neural network. Blood age was significantly correlated with chronological age, and aging gap was positively associated with mortality risk and frailty. Platelets were identified as the strongest age predictor by the deep neural network. An aging clock based on routinely collected blood measures has the potential to provide a practical clinical tool to better understand individual variability in the aging process. The authors used deep learning to derive a biological clock based on routine blood markers in mice that distinguishes slow-aging from fast-aging animals. Drawing on data from the NIH Study of Longitudinal Aging in Mice and a study of aging at The Jackson Laboratory, this clock reveals that platelets are key in predicting biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕奎完成签到,获得积分10
刚刚
1秒前
fzzzzlucy应助T拐拐采纳,获得10
1秒前
伏城完成签到 ,获得积分10
1秒前
SYLH应助leodu采纳,获得10
1秒前
懂事梨完成签到,获得积分20
1秒前
17self完成签到,获得积分10
2秒前
上官若男应助mm采纳,获得10
2秒前
2秒前
书虫发布了新的文献求助10
4秒前
4秒前
阉太狼完成签到,获得积分10
5秒前
Gdhdjxbbx完成签到,获得积分10
5秒前
小蘑菇应助CHBW采纳,获得10
5秒前
爆米花应助hhm采纳,获得10
5秒前
6秒前
kk完成签到,获得积分10
6秒前
7秒前
熊大完成签到,获得积分10
7秒前
打打应助Leeu采纳,获得30
8秒前
Hannahcx发布了新的文献求助10
9秒前
9秒前
小蘑菇应助chang采纳,获得10
9秒前
wyf发布了新的文献求助10
9秒前
9秒前
Zer关闭了Zer文献求助
9秒前
wfwl完成签到,获得积分10
10秒前
调皮的秋柔完成签到,获得积分10
10秒前
10秒前
酷波er应助Solitude采纳,获得10
10秒前
小周周发布了新的文献求助10
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
英俊的铭应助nzxnzx采纳,获得10
14秒前
misu完成签到,获得积分10
14秒前
Ava应助Emma采纳,获得10
15秒前
mm发布了新的文献求助10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650