细胞毒性T细胞
免疫系统
癌症研究
脱颗粒
淋巴细胞
生物
细胞生物学
化学
免疫学
受体
体外
生物化学
作者
Yong‐Min Liang,Xiaoxue Hou,Sheng Wang,Shiyu Peng,Chunxiong Zheng,Qingqing Huang,Yufei Ma,Yuanfeng Li,Yong Liu,Yang Liu,Linqi Shi,Fan Huang
标识
DOI:10.1002/anie.202417518
摘要
Abstract Tumor progression is associated with tumor‐cell softening. Improving the stiffness of the tumor cells can make them more vulnerable to lymphocyte‐mediated attack. Tumor cell membranes typically exhibit higher cholesterol levels than normal cells, making tumor cells soft. Herein, we demonstrate a mechanical immune checkpoint inhibitor (MICI) formulated by cyclodextrin (CD) lipids and fusogenic lipids. Through fusing CD lipids into the tumor cell membrane using a fusogenic liposome formulation, the cholesterol in the plasma membrane is reduced due to the specific host–guest interactions between CD lipid and cholesterol. As a result, tumor cells are stiffened, and the activation of lymphocytes (including NK and cytotoxic effector T cells) is improved when contacting the stiffened tumor cells, characterized by robust degranulation and effector cytokine production. Notably, this treatment has negligible influence on the infiltration and proliferation of lymphocytes in tumor tissues, confirming that the enhanced antitumor efficacy should result from activating a specific number of lymphocytes caused by direct regulation of the tumor cell stiffness. The combination of MICIs and clinical immunotherapies enhances the lymphocyte‐mediated antitumor effects in two tumor mouse models, including breast cancer and melanoma. Our research also reveals an unappreciated mechanical dimension to lymphocyte activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI