Enhancing healthcare recommendation: transfer learning in deep convolutional neural networks for Alzheimer disease detection

学习迁移 人工智能 计算机科学 二元分类 神经影像学 残差神经网络 卷积神经网络 深度学习 模式识别(心理学) 认知障碍 认知 机器学习 支持向量机 神经科学 心理学
作者
Purushottam Kumar Pandey,Jyoti Pruthi,Saeed Alzahrani,Anshul Verma,Benazeer Zohra
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1445325
摘要

Neurodegenerative disorders such as Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) significantly impact brain function and cognition. Advanced neuroimaging techniques, particularly Magnetic Resonance Imaging (MRI), play a crucial role in diagnosing these conditions by detecting structural abnormalities. This study leverages the ADNI and OASIS datasets, renowned for their extensive MRI data, to develop effective models for detecting AD and MCI. The research conducted three sets of tests, comparing multiple groups: multi-class classification (AD vs. Cognitively Normal (CN) vs. MCI), binary classification (AD vs. CN, and MCI vs. CN), to evaluate the performance of models trained on ADNI and OASIS datasets. Key preprocessing techniques such as Gaussian filtering, contrast enhancement, and resizing were applied to both datasets. Additionally, skull stripping using U-Net was utilized to extract features by removing the skull. Several prominent deep learning architectures including DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 were investigated to identify subtle patterns associated with AD and MCI. Transfer learning techniques were employed to enhance model performance, leveraging pre-trained datasets for improved Alzheimer’s MCI detection. ResNet-101 exhibited superior performance compared to other models, achieving 98.21% accuracy on the ADNI dataset and 97.45% accuracy on the OASIS dataset in multi-class classification tasks encompassing AD, CN, and MCI. It also performed well in binary classification tasks distinguishing AD from CN. ResNet-152 excelled particularly in binary classification between MCI and CN on the OASIS dataset. These findings underscore the utility of deep learning models in accurately identifying and distinguishing neurodegenerative diseases, showcasing their potential for enhancing clinical diagnosis and treatment monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝈蝈发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
蓝天应助早安采纳,获得30
4秒前
Lucas应助Muncy采纳,获得10
6秒前
田様应助FYX采纳,获得10
7秒前
fuchao发布了新的文献求助10
8秒前
考拉发布了新的文献求助30
8秒前
科研欢欢鱼完成签到,获得积分10
9秒前
活力怀绿完成签到,获得积分10
11秒前
田様应助无事小神仙采纳,获得10
12秒前
16秒前
丰盛的煎饼完成签到,获得积分0
16秒前
不难不难完成签到,获得积分10
18秒前
共享精神应助荔枝采纳,获得10
20秒前
yugy发布了新的文献求助10
21秒前
22秒前
无极微光应助古月采纳,获得20
23秒前
23秒前
材小料发布了新的文献求助10
27秒前
ChenXY完成签到,获得积分10
27秒前
halo发布了新的文献求助10
28秒前
lst完成签到,获得积分10
29秒前
科研通AI2S应助kangk采纳,获得10
30秒前
浮游应助空明流毓采纳,获得10
32秒前
33秒前
YUESIYA发布了新的文献求助30
34秒前
寒冷的奇异果完成签到,获得积分10
34秒前
spc68应助早安采纳,获得10
38秒前
复成完成签到 ,获得积分10
40秒前
光亮妙之完成签到,获得积分10
40秒前
dd发布了新的文献求助30
40秒前
整齐半青完成签到 ,获得积分10
40秒前
你好完成签到,获得积分10
41秒前
chenanqi完成签到,获得积分10
41秒前
42秒前
yfn完成签到,获得积分10
46秒前
47秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521