Enhancing healthcare recommendation: transfer learning in deep convolutional neural networks for Alzheimer disease detection

学习迁移 人工智能 计算机科学 二元分类 神经影像学 残差神经网络 卷积神经网络 深度学习 模式识别(心理学) 认知障碍 认知 机器学习 支持向量机 神经科学 心理学
作者
Purushottam Kumar Pandey,Jyoti Pruthi,Saeed Alzahrani,Anshul Verma,Benazeer Zohra
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmed.2024.1445325
摘要

Neurodegenerative disorders such as Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) significantly impact brain function and cognition. Advanced neuroimaging techniques, particularly Magnetic Resonance Imaging (MRI), play a crucial role in diagnosing these conditions by detecting structural abnormalities. This study leverages the ADNI and OASIS datasets, renowned for their extensive MRI data, to develop effective models for detecting AD and MCI. The research conducted three sets of tests, comparing multiple groups: multi-class classification (AD vs. Cognitively Normal (CN) vs. MCI), binary classification (AD vs. CN, and MCI vs. CN), to evaluate the performance of models trained on ADNI and OASIS datasets. Key preprocessing techniques such as Gaussian filtering, contrast enhancement, and resizing were applied to both datasets. Additionally, skull stripping using U-Net was utilized to extract features by removing the skull. Several prominent deep learning architectures including DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 were investigated to identify subtle patterns associated with AD and MCI. Transfer learning techniques were employed to enhance model performance, leveraging pre-trained datasets for improved Alzheimer’s MCI detection. ResNet-101 exhibited superior performance compared to other models, achieving 98.21% accuracy on the ADNI dataset and 97.45% accuracy on the OASIS dataset in multi-class classification tasks encompassing AD, CN, and MCI. It also performed well in binary classification tasks distinguishing AD from CN. ResNet-152 excelled particularly in binary classification between MCI and CN on the OASIS dataset. These findings underscore the utility of deep learning models in accurately identifying and distinguishing neurodegenerative diseases, showcasing their potential for enhancing clinical diagnosis and treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
komo发布了新的文献求助10
刚刚
锤你发布了新的文献求助10
1秒前
正直书蕾完成签到,获得积分20
3秒前
RON发布了新的文献求助10
4秒前
柳行天完成签到 ,获得积分10
5秒前
科研通AI6应助奕师采纳,获得10
5秒前
5秒前
赵小坤堃发布了新的文献求助20
5秒前
安好完成签到 ,获得积分10
5秒前
6秒前
zcl应助江丹采纳,获得20
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
Zx_1993应助3ilence采纳,获得10
8秒前
安好关注了科研通微信公众号
9秒前
9秒前
默默无闻的打工仔完成签到,获得积分20
9秒前
9秒前
wmf完成签到 ,获得积分10
10秒前
111完成签到,获得积分10
11秒前
小M发布了新的文献求助10
11秒前
Orange应助唠叨的中道采纳,获得10
12秒前
xiaobei发布了新的文献求助10
13秒前
加减乘除发布了新的文献求助10
13秒前
锤你完成签到,获得积分10
13秒前
尉迟希望应助Monsters采纳,获得10
13秒前
komo完成签到,获得积分10
13秒前
顾矜应助温水云采纳,获得10
14秒前
wtt0109完成签到,获得积分10
14秒前
17秒前
18秒前
七月发布了新的文献求助10
20秒前
21秒前
打打应助Ade采纳,获得10
22秒前
彳亍1117应助chunjianghua采纳,获得10
22秒前
彳亍1117应助chunjianghua采纳,获得10
22秒前
浮游应助chunjianghua采纳,获得10
22秒前
彳亍1117应助chunjianghua采纳,获得10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073345
求助须知:如何正确求助?哪些是违规求助? 4293480
关于积分的说明 13378526
捐赠科研通 4114894
什么是DOI,文献DOI怎么找? 2253241
邀请新用户注册赠送积分活动 1258048
关于科研通互助平台的介绍 1190881