Enhancing healthcare recommendation: transfer learning in deep convolutional neural networks for Alzheimer disease detection

学习迁移 人工智能 计算机科学 二元分类 神经影像学 残差神经网络 卷积神经网络 深度学习 模式识别(心理学) 认知障碍 认知 机器学习 支持向量机 神经科学 心理学
作者
Purushottam Kumar Pandey,Jyoti Pruthi,Saeed Alzahrani,Anshul Verma,Benazeer Zohra
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1445325
摘要

Neurodegenerative disorders such as Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) significantly impact brain function and cognition. Advanced neuroimaging techniques, particularly Magnetic Resonance Imaging (MRI), play a crucial role in diagnosing these conditions by detecting structural abnormalities. This study leverages the ADNI and OASIS datasets, renowned for their extensive MRI data, to develop effective models for detecting AD and MCI. The research conducted three sets of tests, comparing multiple groups: multi-class classification (AD vs. Cognitively Normal (CN) vs. MCI), binary classification (AD vs. CN, and MCI vs. CN), to evaluate the performance of models trained on ADNI and OASIS datasets. Key preprocessing techniques such as Gaussian filtering, contrast enhancement, and resizing were applied to both datasets. Additionally, skull stripping using U-Net was utilized to extract features by removing the skull. Several prominent deep learning architectures including DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 were investigated to identify subtle patterns associated with AD and MCI. Transfer learning techniques were employed to enhance model performance, leveraging pre-trained datasets for improved Alzheimer’s MCI detection. ResNet-101 exhibited superior performance compared to other models, achieving 98.21% accuracy on the ADNI dataset and 97.45% accuracy on the OASIS dataset in multi-class classification tasks encompassing AD, CN, and MCI. It also performed well in binary classification tasks distinguishing AD from CN. ResNet-152 excelled particularly in binary classification between MCI and CN on the OASIS dataset. These findings underscore the utility of deep learning models in accurately identifying and distinguishing neurodegenerative diseases, showcasing their potential for enhancing clinical diagnosis and treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Randy发布了新的文献求助10
2秒前
xiaokao发布了新的文献求助10
2秒前
小小薇完成签到 ,获得积分10
3秒前
Zoe发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
善学以致用应助高兴吐司采纳,获得10
9秒前
guolina完成签到 ,获得积分10
9秒前
bkagyin应助和谐奇异果采纳,获得10
10秒前
Gin完成签到 ,获得积分10
10秒前
Tia完成签到 ,获得积分10
10秒前
忧伤的八宝粥完成签到,获得积分10
11秒前
13秒前
Ddddd完成签到,获得积分10
13秒前
14秒前
ewmmel完成签到 ,获得积分10
14秒前
东东西西发布了新的文献求助10
15秒前
16秒前
17秒前
muzi完成签到,获得积分10
17秒前
戴遇好完成签到 ,获得积分0
18秒前
汉堡包应助hf采纳,获得10
19秒前
subass完成签到 ,获得积分10
20秒前
笑哈哈发布了新的文献求助10
20秒前
试试试完成签到 ,获得积分10
21秒前
mage发布了新的文献求助10
21秒前
镜月完成签到 ,获得积分10
21秒前
高兴吐司完成签到,获得积分20
21秒前
子衿完成签到 ,获得积分10
21秒前
高兴吐司发布了新的文献求助10
23秒前
26秒前
小李叭叭完成签到,获得积分10
27秒前
明亮的冰香完成签到 ,获得积分10
28秒前
丰富的赛君完成签到,获得积分10
28秒前
29秒前
DMW1022完成签到,获得积分10
29秒前
mage完成签到,获得积分10
30秒前
随机子应助jam采纳,获得10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388