Prediction of diabetic retinopathy among type 2 diabetic patients in University of Gondar Comprehensive Specialized Hospital, 2006–2021: A prognostic model

糖尿病性视网膜病变 医学 糖尿病 大学医院 内科学 重症监护医学 验光服务 急诊医学 儿科 内分泌学
作者
Tsion Mulat Tebeje,Melaku Kindie Yenit,Solomon Gedlu Nigatu,Segenet Bizuneh Mengistu,Tigabu Kidie Tesfie,Negalgn Byadgie Gelaw,Yazachew Moges Chekol
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:190: 105536-105536 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105536
摘要

There has been a paucity of evidence for the development of a prediction model for diabetic retinopathy (DR) in Ethiopia. Predicting the risk of developing DR based on the patient's demographic, clinical, and behavioral data is helpful in resource-limited areas where regular screening for DR is not available and to guide practitioners estimate the future risk of their patients. A retrospective follow-up study was conducted at the University of Gondar (UoG) Comprehensive Specialized Hospital from January 2006 to May 2021 among 856 patients with type 2 diabetes (T2DM). Variables were selected using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. The data were validated by 10-fold cross-validation. Four ML techniques (naïve Bayes, K-nearest neighbor, decision tree, and logistic regression) were employed. The performance of each algorithm was measured, and logistic regression was a well-performing algorithm. After multivariable logistic regression and model reduction, a nomogram was developed to predict the individual risk of DR. Logistic regression was the best algorithm for predicting DR with an area under the curve of 92%, sensitivity of 87%, specificity of 83%, precision of 84%, F1-score of 85%, and accuracy of 85%. The logistic regression model selected seven predictors: total cholesterol, duration of diabetes, glycemic control, adherence to anti-diabetic medications, other microvascular complications of diabetes, sex, and hypertension. A nomogram was developed and deployed as a web-based application. A decision curve analysis showed that the model was useful in clinical practice and was better than treating all or none of the patients. The model has excellent performance and a better net benefit to be utilized in clinical practice to show the future probability of having DR. Identifying those with a higher risk of DR helps in the early identification and intervention of DR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜洋洋完成签到 ,获得积分10
刚刚
不知道完成签到 ,获得积分10
刚刚
夜琉璃应助pdskfc采纳,获得40
1秒前
噗噗发布了新的文献求助10
1秒前
3秒前
Eva发布了新的文献求助10
3秒前
4秒前
1123048683wm完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
5秒前
sln完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
8秒前
大模型应助怕孤单的易形采纳,获得10
8秒前
8秒前
噗噗完成签到,获得积分10
9秒前
佳远完成签到,获得积分10
10秒前
qujue001发布了新的文献求助10
11秒前
隐形曼青应助向阳采纳,获得10
11秒前
实打实打算d完成签到,获得积分10
11秒前
淘气乌龙茶完成签到 ,获得积分10
12秒前
12秒前
magic_sweets完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
12秒前
有苏完成签到,获得积分20
12秒前
Tao2023发布了新的文献求助10
12秒前
12秒前
13秒前
岳莹晓完成签到 ,获得积分10
13秒前
Max完成签到,获得积分20
13秒前
所所应助jingle采纳,获得20
15秒前
资新烟完成签到 ,获得积分10
15秒前
安静的马里奥关注了科研通微信公众号
15秒前
15秒前
wwww发布了新的文献求助10
16秒前
小土豆完成签到 ,获得积分10
16秒前
16秒前
优美紫槐发布了新的文献求助10
18秒前
小高完成签到,获得积分10
18秒前
18秒前
洁净的画板完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132