Prediction of diabetic retinopathy among type 2 diabetic patients in University of Gondar Comprehensive Specialized Hospital, 2006–2021: A prognostic model

糖尿病性视网膜病变 医学 糖尿病 大学医院 内科学 重症监护医学 验光服务 急诊医学 儿科 内分泌学
作者
Tsion Mulat Tebeje,Melaku Kindie Yenit,Solomon Gedlu Nigatu,Segenet Bizuneh Mengistu,Tigabu Kidie Tesfie,Negalgn Byadgie Gelaw,Yazachew Moges Chekol
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:190: 105536-105536 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105536
摘要

There has been a paucity of evidence for the development of a prediction model for diabetic retinopathy (DR) in Ethiopia. Predicting the risk of developing DR based on the patient's demographic, clinical, and behavioral data is helpful in resource-limited areas where regular screening for DR is not available and to guide practitioners estimate the future risk of their patients. A retrospective follow-up study was conducted at the University of Gondar (UoG) Comprehensive Specialized Hospital from January 2006 to May 2021 among 856 patients with type 2 diabetes (T2DM). Variables were selected using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. The data were validated by 10-fold cross-validation. Four ML techniques (naïve Bayes, K-nearest neighbor, decision tree, and logistic regression) were employed. The performance of each algorithm was measured, and logistic regression was a well-performing algorithm. After multivariable logistic regression and model reduction, a nomogram was developed to predict the individual risk of DR. Logistic regression was the best algorithm for predicting DR with an area under the curve of 92%, sensitivity of 87%, specificity of 83%, precision of 84%, F1-score of 85%, and accuracy of 85%. The logistic regression model selected seven predictors: total cholesterol, duration of diabetes, glycemic control, adherence to anti-diabetic medications, other microvascular complications of diabetes, sex, and hypertension. A nomogram was developed and deployed as a web-based application. A decision curve analysis showed that the model was useful in clinical practice and was better than treating all or none of the patients. The model has excellent performance and a better net benefit to be utilized in clinical practice to show the future probability of having DR. Identifying those with a higher risk of DR helps in the early identification and intervention of DR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小早发布了新的文献求助10
1秒前
万能图书馆应助yc采纳,获得10
1秒前
1秒前
i1完成签到 ,获得积分10
1秒前
1秒前
litianyuan完成签到,获得积分10
2秒前
停停走走发布了新的文献求助10
2秒前
2秒前
Lucas应助Liiii采纳,获得10
2秒前
3秒前
邪恶西瓜皮完成签到,获得积分10
3秒前
3秒前
科研通AI6应助安详的黄蜂采纳,获得10
4秒前
4秒前
4秒前
Elena完成签到,获得积分10
4秒前
Sunshine发布了新的文献求助10
4秒前
4秒前
5秒前
kk完成签到,获得积分10
5秒前
大模型应助zhouzhou采纳,获得20
5秒前
摆烂蛋挞发布了新的文献求助10
5秒前
orixero应助小狗同志006采纳,获得10
5秒前
6秒前
高贵幼枫完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
搜集达人应助停停走走采纳,获得10
6秒前
在水一方应助自信的叫兽采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
达不溜的话语权完成签到,获得积分10
7秒前
17764715645完成签到,获得积分10
7秒前
林宥嘉发布了新的文献求助10
7秒前
xdas完成签到,获得积分20
7秒前
炸洋芋发布了新的文献求助10
8秒前
BrainRed2887发布了新的文献求助10
8秒前
Xiaoab完成签到,获得积分10
8秒前
石冠山完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410