Mechanisms of Controllable Growth and Ohmic Contact of Two-Dimensional Molybdenum Disulfide: Insight from Atomistic Simulations

二硫化钼 欧姆接触 二硫键 分子动力学 材料科学 化学物理 纳米技术 化学 结晶学 计算化学 冶金 生物化学 图层(电子)
作者
Liang Ma,Xiaoshu Gong,Ruikang Dong,Jinlan Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (23): 3375-3385 被引量:7
标识
DOI:10.1021/acs.accounts.4c00495
摘要

ConspectusTwo-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), in particular molybdenum disulfide (MoS2), have recently attracted huge interest due to their proper bandgap, high mobility at 2D limit, and easy-to-integrate planar structure, which are very promising for extending Moore's law in postsilicon electronics technology. Great effort has been devoted toward such a goal since the demonstration of protype MoS2 devices with high room-temperature on/off current ratios, ultralow standby power consumption, and atomic level scaling capacity down to sub-1-nm technology node. However, there are still several key challenges that need to be addressed prior to the real application of MoS2-based electronics technology. The controllable growth of wafer-scale single-crystal MoS2 on industry-compatible insulating substrates is the prerequisite of application while the currently synthesized MoS2 films mostly are polycrystalline with limited sizes of single-crystal domains and may involve metal substrates. The precise layer-control is also very important for MoS2 growth since its electronic properties are layer-dependent, whereas the layer-by-layer growth of multilayer MoS2 dominated by the van der Waals (vdW) epitaxy leads to poor thickness uniformity and noncontinuously distributed domains. High density up to 1013 cm-2 of sulfur vacancies (SVs) in grown MoS2 can cause unfavorable carrier scatting and electronic properties variations and will inevitably disturb the device performance. The dangling-bond-free surface of MoS2 gives rise to an inherent vdW gap at metal-semiconductor (M-S) contact, which leads to high electrical resistance and poor current-delivery capability at the contact interface and thereby substantially limits the performances of MoS2 devices.In this Account, we briefly review recent experimental and theoretical attempts for addressing the aforementioned challenges and present our own insights from atomistic simulations. We theoretically revealed the vital role of substrate steps for guiding unidirectional nucleation of monolayer MoS2 and uniform nucleation and edge-aligned growth of bilayer MoS2 by advanced simulations. The established thermodynamic mechanisms have successfully directed the experimental works on the controllable growth of 2 in. single-crystal monolayer and centimeter-scale uniform bilayer MoS2. The postgrowth repair mechanism of SV defect in MoS2 via thiol chemistry treatment has been theoretically explored with the consideration of side reaction of surface functionalization to help experimentally reduce SV defect density by 75%. Beyond the atomic level understanding, theoretical simulations proposed the electronic states hybridization mechanism across the semimetal-MoS2 vdW interface, thereby guiding experimental effort for realizing Ohmic contact at the MoS2-Sb(0112) vdW interface with record-low contact resistance.These advances provide a sound basis with an atomic-level understanding for addressing the related issues. However, there are still notable gaps in terms of system size and time scale of dynamics between atomistic simulations and experimental observations for the studies of MoS2 growth and interfaces. The combination of multiscale simulations and artificial intelligence technology is expected to narrow these gaps and provide a more insightful understanding of the controllable growth and interfacial properties modulation of MoS2. We conclude the Account with the standing challenges and outlook on future research directions from the theoretical perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
霍师傅发布了新的文献求助10
1秒前
领导范儿应助77222采纳,获得10
1秒前
1秒前
啦啦啦发布了新的文献求助10
1秒前
万能图书馆应助刘丰铭采纳,获得10
2秒前
wang完成签到 ,获得积分10
3秒前
zpw123123发布了新的文献求助10
3秒前
竹峪卿发布了新的文献求助10
4秒前
义气的雨旋完成签到,获得积分10
4秒前
市井小民完成签到,获得积分10
4秒前
NIHAO213发布了新的文献求助10
4秒前
tougerr发布了新的文献求助10
5秒前
意难平完成签到,获得积分10
5秒前
小蘑菇应助霍师傅采纳,获得10
5秒前
明灯三千完成签到,获得积分10
6秒前
汉堡包应助98741采纳,获得20
7秒前
Ava应助Molly采纳,获得10
9秒前
慕青应助、、采纳,获得10
9秒前
10秒前
水刃木完成签到,获得积分10
10秒前
喜欢猫完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
123发布了新的文献求助10
12秒前
Hello应助wisdom采纳,获得10
12秒前
12秒前
13秒前
竹峪卿完成签到,获得积分10
14秒前
今后应助夏阳采纳,获得10
15秒前
烟花应助StandardR采纳,获得10
15秒前
15秒前
zpw123123完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
在水一方应助lilei采纳,获得10
16秒前
姜彦乔发布了新的文献求助10
17秒前
nong12123完成签到,获得积分10
17秒前
刘丰铭发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013