Mechanisms of Controllable Growth and Ohmic Contact of Two-Dimensional Molybdenum Disulfide: Insight from Atomistic Simulations

二硫化钼 欧姆接触 二硫键 分子动力学 材料科学 化学物理 纳米技术 化学 结晶学 计算化学 冶金 生物化学 图层(电子)
作者
Liang Ma,Xiaoshu Gong,Ruikang Dong,Jinlan Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00495
摘要

ConspectusTwo-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), in particular molybdenum disulfide (MoS2), have recently attracted huge interest due to their proper bandgap, high mobility at 2D limit, and easy-to-integrate planar structure, which are very promising for extending Moore's law in postsilicon electronics technology. Great effort has been devoted toward such a goal since the demonstration of protype MoS2 devices with high room-temperature on/off current ratios, ultralow standby power consumption, and atomic level scaling capacity down to sub-1-nm technology node. However, there are still several key challenges that need to be addressed prior to the real application of MoS2-based electronics technology. The controllable growth of wafer-scale single-crystal MoS2 on industry-compatible insulating substrates is the prerequisite of application while the currently synthesized MoS2 films mostly are polycrystalline with limited sizes of single-crystal domains and may involve metal substrates. The precise layer-control is also very important for MoS2 growth since its electronic properties are layer-dependent, whereas the layer-by-layer growth of multilayer MoS2 dominated by the van der Waals (vdW) epitaxy leads to poor thickness uniformity and noncontinuously distributed domains. High density up to 1013 cm–2 of sulfur vacancies (SVs) in grown MoS2 can cause unfavorable carrier scatting and electronic properties variations and will inevitably disturb the device performance. The dangling-bond-free surface of MoS2 gives rise to an inherent vdW gap at metal–semiconductor (M–S) contact, which leads to high electrical resistance and poor current-delivery capability at the contact interface and thereby substantially limits the performances of MoS2 devices.In this Account, we briefly review recent experimental and theoretical attempts for addressing the aforementioned challenges and present our own insights from atomistic simulations. We theoretically revealed the vital role of substrate steps for guiding unidirectional nucleation of monolayer MoS2 and uniform nucleation and edge-aligned growth of bilayer MoS2 by advanced simulations. The established thermodynamic mechanisms have successfully directed the experimental works on the controllable growth of 2 in. single-crystal monolayer and centimeter-scale uniform bilayer MoS2. The postgrowth repair mechanism of SV defect in MoS2 via thiol chemistry treatment has been theoretically explored with the consideration of side reaction of surface functionalization to help experimentally reduce SV defect density by 75%. Beyond the atomic level understanding, theoretical simulations proposed the electronic states hybridization mechanism across the semimetal-MoS2 vdW interface, thereby guiding experimental effort for realizing Ohmic contact at the MoS2–Sb(0112) vdW interface with record-low contact resistance.These advances provide a sound basis with an atomic-level understanding for addressing the related issues. However, there are still notable gaps in terms of system size and time scale of dynamics between atomistic simulations and experimental observations for the studies of MoS2 growth and interfaces. The combination of multiscale simulations and artificial intelligence technology is expected to narrow these gaps and provide a more insightful understanding of the controllable growth and interfacial properties modulation of MoS2. We conclude the Account with the standing challenges and outlook on future research directions from the theoretical perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
7秒前
10秒前
even完成签到 ,获得积分0
15秒前
mzrrong完成签到 ,获得积分10
15秒前
不安青牛举报小佳同学求助涉嫌违规
20秒前
i2stay完成签到,获得积分10
21秒前
默默完成签到 ,获得积分10
21秒前
西柚柠檬完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
25秒前
不安青牛举报有机卡拉米求助涉嫌违规
28秒前
赵鑫霖完成签到 ,获得积分10
30秒前
彩色靖儿完成签到 ,获得积分10
30秒前
31秒前
syw完成签到,获得积分10
32秒前
wenbinvan完成签到,获得积分0
32秒前
雾色笼晓树苍完成签到 ,获得积分10
35秒前
豌豆完成签到 ,获得积分10
36秒前
水流众生完成签到 ,获得积分10
36秒前
luckweb完成签到,获得积分10
37秒前
Ao_Jiang完成签到,获得积分10
38秒前
熊二完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助200
45秒前
zwww完成签到,获得积分10
46秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
48秒前
小庄完成签到 ,获得积分10
50秒前
鲲鹏完成签到 ,获得积分10
54秒前
ZC完成签到,获得积分10
56秒前
不可靠月亮完成签到,获得积分10
57秒前
小胖完成签到 ,获得积分10
58秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
清爽达完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
可靠月亮完成签到,获得积分10
1分钟前
magicyang完成签到,获得积分10
1分钟前
芭娜55发布了新的文献求助10
1分钟前
xmqaq完成签到,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927048
求助须知:如何正确求助?哪些是违规求助? 4196474
关于积分的说明 13032887
捐赠科研通 3969049
什么是DOI,文献DOI怎么找? 2175260
邀请新用户注册赠送积分活动 1192349
关于科研通互助平台的介绍 1102933