Intelligent Building Construction Cost Optimization and Prediction by Integrating BIM and Elman Neural Network

人工神经网络 工程类 人工智能 计算机科学 建筑工程 系统工程 工程管理 管理科学 机器学习
作者
Yanfen Zhang,Haijun Mo
出处
期刊:Heliyon [Elsevier]
卷期号:10 (18): e37525-e37525 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e37525
摘要

This study aims to address the challenges of capturing design changes, supply chain fluctuations, and labor cost variations to improve the accuracy and real-time nature of intelligent building construction cost predictions. It seeks to accurately forecast and optimize project costs. The study innovatively constructs an intelligent building construction cost prediction model based on Building Information Modeling (BIM) and Elman neural networks (ENNs), denoted as the BIM-ENN model. The BIM-ENN model first introduces BIM technology to digitize and visualize information related to building structures, electromechanical systems, and pipelines. The digitized data obtained through BIM technology is then used as input data for the ENN, which optimizes the neural network parameters to predict and optimize intelligent building construction costs. Finally, the BIM-ENN model is experimentally evaluated. The results demonstrate that the prediction value of the construction cost of the intelligent building by this model closely matches the original information price, with a prediction accuracy of 95.83 %. Compared with the single ENN, the root mean squared error of the BIM-ENN model is less than 75, and the determination coefficient is above 0.95. This indicates that this model can explain more than 95 % of the construction cost prediction results, making it a feasible solution for actual prediction problems and achieving satisfactory results. The intelligent building construction cost prediction model reported here exhibits high accuracy and reliability. It can successfully forecast construction costs, providing robust decision support for the digitalization and intelligent development of construction enterprises. The practical significance of this study lies in providing the construction industry with an accurate cost management tool that helps enterprises optimize budget control and resource allocation, enhancing risk assessment and management capabilities. Moreover, the potential impact of the BIM-ENN model is its ability to elevate prediction standards within the construction industry, promote technological integration and innovation, enhance enterprise competitiveness, and drive the industry's transition towards digitalization and intelligent sustainable development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默克完成签到,获得积分10
刚刚
1秒前
1秒前
跳跃忆南发布了新的文献求助10
2秒前
Stata@R发布了新的文献求助10
3秒前
NexusExplorer应助小丸子采纳,获得10
4秒前
修脚大师完成签到,获得积分10
4秒前
Dimples完成签到,获得积分10
4秒前
NexusExplorer应助偏执采纳,获得10
5秒前
6秒前
桐桐应助wang采纳,获得10
8秒前
修脚大师发布了新的文献求助20
9秒前
星辰大海应助Stata@R采纳,获得10
10秒前
yjw545433关注了科研通微信公众号
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
传奇3应助Xinxxx采纳,获得10
14秒前
涨水娃发布了新的文献求助10
16秒前
缚大哥发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
19秒前
复杂的懿轩完成签到,获得积分10
20秒前
22秒前
脑洞疼应助哈哈哈采纳,获得10
23秒前
铅笔完成签到,获得积分10
23秒前
23秒前
闪闪的映冬完成签到 ,获得积分10
23秒前
23秒前
yjw545433发布了新的文献求助10
23秒前
斯文绿凝完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
橡树完成签到,获得积分10
28秒前
28秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422380
求助须知:如何正确求助?哪些是违规求助? 3022679
关于积分的说明 8902215
捐赠科研通 2710096
什么是DOI,文献DOI怎么找? 1486318
科研通“疑难数据库(出版商)”最低求助积分说明 687010
邀请新用户注册赠送积分活动 682225