Application of Deep Learning Techniques for the State of Charge Prediction of Lithium-Ion Batteries

离子 电荷(物理) 材料科学 锂(药物) 工程物理 化学 工程类 心理学 物理 量子力学 精神科 有机化学
作者
Sang‐Bum Kim,Sanghyun Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 8077-8077
标识
DOI:10.3390/app14178077
摘要

This study proposes a deep learning-based long short-term memory (LSTM) model to predict the state of charge (SOC) of lithium-ion batteries. The purpose of the research is to accurately model the complex nonlinear behavior that occurs during the charging and discharging processes of batteries to predict the SOC. The LSTM model was trained using battery data collected under various temperature and load conditions. To evaluate the performance of the artificial intelligence model, measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering was utilized. The LSTM model excels in learning long-term dependencies from sequence data, effectively modeling temporal patterns in battery data. The study trained the LSTM model based on battery data collected from various charge and discharge cycles and evaluated the model’s performance by epoch to determine the optimal configuration. The proposed model demonstrated high SOC estimation accuracy for various charging and discharging profiles. As training progressed, the model’s predictive performance improved, with the predicted SOC moving from 14.8400% at epoch 10 to 12.4968% at epoch 60, approaching the actual SOC value of 13.5441%. Simultaneously, the mean absolute error (MAE) and root mean squared error (RMSE) decreased from 0.9185% and 1.3009% at epoch 10 to 0.2333% and 0.5682% at epoch 60, respectively, indicating continuous improvement in predictive performance. In conclusion, this study demonstrates the effectiveness of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance the performance of battery management systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
求助人员应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
不要预印本_注意着点完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
一自文又欠完成签到 ,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
萧萧应助科研通管家采纳,获得10
2秒前
chenm0333042完成签到,获得积分10
3秒前
稚生w发布了新的文献求助10
4秒前
4秒前
标致过客2025完成签到,获得积分10
5秒前
sen123完成签到,获得积分10
5秒前
6秒前
李先生完成签到 ,获得积分10
7秒前
穆一手完成签到 ,获得积分10
7秒前
Barium完成签到,获得积分10
8秒前
标致的冷梅完成签到,获得积分10
8秒前
脑洞疼应助一个小胖子采纳,获得10
9秒前
RenHP完成签到,获得积分10
9秒前
wendydqw完成签到 ,获得积分10
9秒前
任性的初蝶完成签到,获得积分10
9秒前
10秒前
halona完成签到,获得积分10
10秒前
kmmu0611完成签到 ,获得积分10
11秒前
leclerc完成签到,获得积分10
11秒前
诸葛平卉完成签到 ,获得积分10
12秒前
xgrr发布了新的文献求助10
13秒前
13秒前
LW完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
tym完成签到,获得积分10
14秒前
武科大完成签到,获得积分10
15秒前
郑大小神龙完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131