Application of Deep Learning Techniques for the State of Charge Prediction of Lithium-Ion Batteries

离子 电荷(物理) 材料科学 锂(药物) 工程物理 化学 工程类 心理学 物理 量子力学 精神科 有机化学
作者
Sang‐Bum Kim,Sanghyun Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 8077-8077
标识
DOI:10.3390/app14178077
摘要

This study proposes a deep learning-based long short-term memory (LSTM) model to predict the state of charge (SOC) of lithium-ion batteries. The purpose of the research is to accurately model the complex nonlinear behavior that occurs during the charging and discharging processes of batteries to predict the SOC. The LSTM model was trained using battery data collected under various temperature and load conditions. To evaluate the performance of the artificial intelligence model, measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering was utilized. The LSTM model excels in learning long-term dependencies from sequence data, effectively modeling temporal patterns in battery data. The study trained the LSTM model based on battery data collected from various charge and discharge cycles and evaluated the model’s performance by epoch to determine the optimal configuration. The proposed model demonstrated high SOC estimation accuracy for various charging and discharging profiles. As training progressed, the model’s predictive performance improved, with the predicted SOC moving from 14.8400% at epoch 10 to 12.4968% at epoch 60, approaching the actual SOC value of 13.5441%. Simultaneously, the mean absolute error (MAE) and root mean squared error (RMSE) decreased from 0.9185% and 1.3009% at epoch 10 to 0.2333% and 0.5682% at epoch 60, respectively, indicating continuous improvement in predictive performance. In conclusion, this study demonstrates the effectiveness of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance the performance of battery management systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
...完成签到,获得积分10
刚刚
ZeKaWa应助堡主采纳,获得10
刚刚
Hide杰完成签到,获得积分10
1秒前
1秒前
妮妮发布了新的文献求助10
2秒前
2秒前
bob完成签到,获得积分10
3秒前
3秒前
小6发布了新的文献求助10
3秒前
orixero应助坚定剑成采纳,获得10
4秒前
4秒前
斯文败类应助muyi采纳,获得10
5秒前
PP完成签到,获得积分10
5秒前
温柔雅蕊完成签到,获得积分10
5秒前
liuf发布了新的文献求助10
5秒前
...发布了新的文献求助30
6秒前
干净寻冬应助默默善愁采纳,获得10
6秒前
cuicui发布了新的文献求助10
6秒前
7秒前
庚朝年完成签到 ,获得积分10
8秒前
9秒前
wtdai完成签到,获得积分10
10秒前
10秒前
果粒橙子发布了新的文献求助10
11秒前
chengyue9939完成签到,获得积分10
11秒前
mf发布了新的文献求助10
11秒前
听风完成签到 ,获得积分10
11秒前
12秒前
JIA发布了新的文献求助10
12秒前
研友_VZG7GZ应助搁浅采纳,获得10
12秒前
12秒前
惜云完成签到,获得积分10
13秒前
hbr发布了新的文献求助10
14秒前
完美世界应助温柔雅蕊采纳,获得10
14秒前
汉堡包应助妮妮采纳,获得10
14秒前
15秒前
超帅pzc发布了新的文献求助10
15秒前
15秒前
英俊的铭应助柑橘小桃酥采纳,获得10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655