Application of Deep Learning Techniques for the State of Charge Prediction of Lithium-Ion Batteries

离子 电荷(物理) 材料科学 锂(药物) 工程物理 化学 工程类 心理学 物理 量子力学 精神科 有机化学
作者
Sang‐Bum Kim,Sanghyun Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 8077-8077
标识
DOI:10.3390/app14178077
摘要

This study proposes a deep learning-based long short-term memory (LSTM) model to predict the state of charge (SOC) of lithium-ion batteries. The purpose of the research is to accurately model the complex nonlinear behavior that occurs during the charging and discharging processes of batteries to predict the SOC. The LSTM model was trained using battery data collected under various temperature and load conditions. To evaluate the performance of the artificial intelligence model, measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering was utilized. The LSTM model excels in learning long-term dependencies from sequence data, effectively modeling temporal patterns in battery data. The study trained the LSTM model based on battery data collected from various charge and discharge cycles and evaluated the model’s performance by epoch to determine the optimal configuration. The proposed model demonstrated high SOC estimation accuracy for various charging and discharging profiles. As training progressed, the model’s predictive performance improved, with the predicted SOC moving from 14.8400% at epoch 10 to 12.4968% at epoch 60, approaching the actual SOC value of 13.5441%. Simultaneously, the mean absolute error (MAE) and root mean squared error (RMSE) decreased from 0.9185% and 1.3009% at epoch 10 to 0.2333% and 0.5682% at epoch 60, respectively, indicating continuous improvement in predictive performance. In conclusion, this study demonstrates the effectiveness of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance the performance of battery management systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fortune发布了新的文献求助10
1秒前
华仔应助ChenxiDai采纳,获得10
1秒前
2秒前
一陈天下发布了新的文献求助10
2秒前
研友_8QyXr8完成签到,获得积分10
2秒前
科研通AI6应助别吃小米粥采纳,获得10
2秒前
youxianlang完成签到,获得积分10
2秒前
幽默的煎蛋关注了科研通微信公众号
3秒前
3秒前
dongmei发布了新的文献求助10
3秒前
tr发布了新的文献求助30
3秒前
丘比特应助陪我晚睡采纳,获得10
3秒前
饱满含玉完成签到,获得积分10
4秒前
qweasd完成签到,获得积分10
4秒前
ycsl完成签到,获得积分10
4秒前
wxyshare应助北枳采纳,获得10
5秒前
6秒前
7秒前
7秒前
7秒前
无情妙菡发布了新的文献求助10
7秒前
8R60d8应助大胆的忆安采纳,获得10
7秒前
Hello应助玖玖采纳,获得10
7秒前
脑洞疼应助yolo采纳,获得10
7秒前
7秒前
今后应助那位沙福林大人采纳,获得10
8秒前
无尘泪完成签到,获得积分10
8秒前
123456完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
离研通发布了新的文献求助10
8秒前
Owen应助张楚岚采纳,获得10
8秒前
脑洞疼应助子铭采纳,获得10
8秒前
8秒前
8秒前
9秒前
huang完成签到,获得积分20
9秒前
SciGPT应助深情海秋采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668