Application of Deep Learning Techniques for the State of Charge Prediction of Lithium-Ion Batteries

离子 电荷(物理) 材料科学 锂(药物) 工程物理 化学 工程类 心理学 物理 量子力学 精神科 有机化学
作者
Sang‐Bum Kim,Sanghyun Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 8077-8077
标识
DOI:10.3390/app14178077
摘要

This study proposes a deep learning-based long short-term memory (LSTM) model to predict the state of charge (SOC) of lithium-ion batteries. The purpose of the research is to accurately model the complex nonlinear behavior that occurs during the charging and discharging processes of batteries to predict the SOC. The LSTM model was trained using battery data collected under various temperature and load conditions. To evaluate the performance of the artificial intelligence model, measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering was utilized. The LSTM model excels in learning long-term dependencies from sequence data, effectively modeling temporal patterns in battery data. The study trained the LSTM model based on battery data collected from various charge and discharge cycles and evaluated the model’s performance by epoch to determine the optimal configuration. The proposed model demonstrated high SOC estimation accuracy for various charging and discharging profiles. As training progressed, the model’s predictive performance improved, with the predicted SOC moving from 14.8400% at epoch 10 to 12.4968% at epoch 60, approaching the actual SOC value of 13.5441%. Simultaneously, the mean absolute error (MAE) and root mean squared error (RMSE) decreased from 0.9185% and 1.3009% at epoch 10 to 0.2333% and 0.5682% at epoch 60, respectively, indicating continuous improvement in predictive performance. In conclusion, this study demonstrates the effectiveness of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance the performance of battery management systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting完成签到,获得积分10
1秒前
高兴藏花完成签到 ,获得积分20
1秒前
健忘的沛蓝完成签到 ,获得积分10
1秒前
clear发布了新的文献求助10
2秒前
2秒前
感动傀斗完成签到,获得积分10
2秒前
眼睛大的小鸽子完成签到 ,获得积分10
2秒前
hu完成签到,获得积分10
2秒前
科研通AI5应助顺顺采纳,获得10
2秒前
思源应助shengChen采纳,获得10
3秒前
宁静致远发布了新的文献求助10
4秒前
zhenpeng8888完成签到 ,获得积分10
4秒前
霜序初四完成签到 ,获得积分10
4秒前
5秒前
爆米花应助青木蓝采纳,获得10
5秒前
顾矜应助frank采纳,获得10
6秒前
heavennew完成签到,获得积分10
6秒前
充电宝应助绘梨衣采纳,获得10
7秒前
华仔应助励志小薛采纳,获得10
7秒前
7秒前
7秒前
单薄新烟发布了新的文献求助10
8秒前
8秒前
桐桐应助小王采纳,获得10
8秒前
9秒前
9秒前
9秒前
楚岸发布了新的文献求助10
11秒前
阿强哥20241101完成签到,获得积分10
11秒前
TQY完成签到,获得积分10
12秒前
Khr1stINK发布了新的文献求助10
12秒前
宁静致远完成签到,获得积分10
12秒前
mxbyccbaby完成签到,获得积分10
13秒前
13秒前
楼寒天发布了新的文献求助30
13秒前
13秒前
jdmeme完成签到 ,获得积分10
14秒前
DVD完成签到 ,获得积分10
15秒前
学术嫪毐完成签到,获得积分10
15秒前
Xyyy发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794