Application of Deep Learning Techniques for the State of Charge Prediction of Lithium-Ion Batteries

离子 电荷(物理) 材料科学 锂(药物) 工程物理 化学 工程类 心理学 物理 量子力学 精神科 有机化学
作者
Sang‐Bum Kim,Sanghyun Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 8077-8077
标识
DOI:10.3390/app14178077
摘要

This study proposes a deep learning-based long short-term memory (LSTM) model to predict the state of charge (SOC) of lithium-ion batteries. The purpose of the research is to accurately model the complex nonlinear behavior that occurs during the charging and discharging processes of batteries to predict the SOC. The LSTM model was trained using battery data collected under various temperature and load conditions. To evaluate the performance of the artificial intelligence model, measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering was utilized. The LSTM model excels in learning long-term dependencies from sequence data, effectively modeling temporal patterns in battery data. The study trained the LSTM model based on battery data collected from various charge and discharge cycles and evaluated the model’s performance by epoch to determine the optimal configuration. The proposed model demonstrated high SOC estimation accuracy for various charging and discharging profiles. As training progressed, the model’s predictive performance improved, with the predicted SOC moving from 14.8400% at epoch 10 to 12.4968% at epoch 60, approaching the actual SOC value of 13.5441%. Simultaneously, the mean absolute error (MAE) and root mean squared error (RMSE) decreased from 0.9185% and 1.3009% at epoch 10 to 0.2333% and 0.5682% at epoch 60, respectively, indicating continuous improvement in predictive performance. In conclusion, this study demonstrates the effectiveness of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance the performance of battery management systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的千愁完成签到,获得积分10
刚刚
renshiq完成签到,获得积分10
3秒前
独特背包完成签到,获得积分10
5秒前
Aipoi1完成签到,获得积分10
5秒前
5秒前
6秒前
双子土豆泥完成签到 ,获得积分10
6秒前
CipherSage应助vivian采纳,获得10
6秒前
xxiix完成签到,获得积分10
7秒前
mihhhhh发布了新的文献求助10
8秒前
坚强的橘子完成签到 ,获得积分10
9秒前
bkagyin应助贝利亚采纳,获得10
9秒前
平淡纸飞机完成签到 ,获得积分10
10秒前
Jasper应助等待的音响采纳,获得10
10秒前
冷傲迎梦完成签到,获得积分20
10秒前
烟花应助Kuroneko采纳,获得10
12秒前
ines完成签到 ,获得积分10
13秒前
Wuc完成签到,获得积分10
13秒前
xiaolei001应助刘浩然采纳,获得10
13秒前
烟花应助爱笑萝莉采纳,获得10
13秒前
晴雪完成签到,获得积分10
14秒前
jiajiajai完成签到,获得积分10
14秒前
Drone应助yyds采纳,获得10
14秒前
早日毕业完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
Jau完成签到,获得积分0
15秒前
Tsct完成签到,获得积分10
16秒前
qqq发布了新的文献求助10
17秒前
酒尚温完成签到 ,获得积分10
18秒前
丘比特应助111采纳,获得10
18秒前
FashionBoy应助fll采纳,获得10
19秒前
cldg完成签到,获得积分10
19秒前
朝暮完成签到 ,获得积分10
20秒前
20秒前
伏伏雅逸发布了新的文献求助10
21秒前
win发布了新的文献求助10
21秒前
shilly完成签到 ,获得积分10
22秒前
刘浩然完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650372
关于积分的说明 14690731
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519519
邀请新用户注册赠送积分活动 1491978
关于科研通互助平台的介绍 1463183