Selective Association Enforced by the Confinement Effect To Boost the Regioselectivity of Vinyl Acetate Hydroformylation

氢甲酰化 区域选择性 醋酸乙烯酯 催化作用 化学 有机化学 组合化学 共聚物 聚合物
作者
Guoqing Wang,Miao Jiang,Benhan Fan,Zhao Sun,Leilei Qian,Guangjun Ji,Lei Ma,Cunyao Li,Zhaozhan Wang,Guifa Long,Yong Yang,Yan Li,Yunjie Ding
出处
期刊:ACS Catalysis 卷期号:14 (21): 16014-16024 被引量:1
标识
DOI:10.1021/acscatal.4c03932
摘要

1,3-Propanediol derived from vinyl acetate through hydroformylation/hydrogenation has always been considered the most promising strategy to substitute the current technology. So far, the linear aldehyde regioselectivity of vinyl acetate hydroformylation is still far from satisfactory. Herein, we prepare a series of single-site catalysts with a confinement effect, in which different second-shell atoms (C, O, and N) are bonded with the P atom. The Rh–P–N-POPs catalyst, in which two N and one O atoms are bonded with a P atom, delivers not only a good aldehyde yield but also attractive regioselectivity (l/b = 1.5), outperforming Rh–P–C-POPs (l/b = 0.007), Rh–P–O-POPs (l/b = 0.01), and all previously reported optimizing Rh catalysts (l/b = 0.8). Characterizations and DFT calculations suggest that the enhanced performance is mainly ascribed to selective association enforced by the confinement effect and electron-deficient properties. The confinement effect, which is imposed by the ligand, hinders the chelating effect of acetate and facilitates the selective association of Rh with the terminal carbon of olefins. Meanwhile, N as second-shell atoms in the Rh–P–N-POPs catalyst endows Rh active sites with an electron-deficient coordination environment and accelerates the linear aldehyde forming rate. This work offers an effective strategy to regulate the hydroformylation performance by the confinement effect for the modulation of a second-shell atom, which sheds light on designing heterogeneous catalysts with high regioselectivity for the hydroformylation of functional olefins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助机灵雨采纳,获得10
4秒前
追寻飞风完成签到,获得积分10
6秒前
龙傲天完成签到,获得积分10
9秒前
10秒前
V_I_G完成签到,获得积分10
10秒前
风趣的半蕾完成签到 ,获得积分10
11秒前
TEY完成签到 ,获得积分10
11秒前
cappuccino完成签到 ,获得积分10
11秒前
善良又亦完成签到 ,获得积分10
12秒前
韭菜发布了新的文献求助10
14秒前
花开四海完成签到 ,获得积分10
15秒前
风信子完成签到,获得积分10
15秒前
李爱国应助韭菜采纳,获得10
19秒前
菜菜陈会成为大神完成签到 ,获得积分10
19秒前
chrysan完成签到,获得积分10
21秒前
尹冰露完成签到,获得积分10
23秒前
黑就嘿完成签到 ,获得积分10
24秒前
世间安得双全法完成签到,获得积分0
26秒前
义气凡阳完成签到,获得积分10
27秒前
火星仙人掌完成签到 ,获得积分10
29秒前
嗯哼应助豆豆采纳,获得20
31秒前
31秒前
guoguo完成签到 ,获得积分10
31秒前
34秒前
张益达发布了新的文献求助10
34秒前
35秒前
韭菜发布了新的文献求助10
35秒前
fossick2010完成签到 ,获得积分10
35秒前
nianshu完成签到 ,获得积分10
35秒前
meng完成签到,获得积分10
36秒前
轩辕剑身完成签到,获得积分0
39秒前
zhangsan完成签到,获得积分10
39秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
传奇3应助韭菜采纳,获得10
41秒前
孙老师完成签到 ,获得积分10
45秒前
Tysonqu完成签到,获得积分10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466849
求助须知:如何正确求助?哪些是违规求助? 3059711
关于积分的说明 9067459
捐赠科研通 2750193
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696923